Ориентируйся по рисунку. так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120. треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70
так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120.
треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70
Так как противоположные стороны параллелограмма параллельны, то угол СНD=угол ADH как накрест-лежащие при параллельных прямых AD u BC и секущей DH.
Биссектриса делит угол на два равных угла.
Следовательно угол СDH=угол ADH.
Исходя из найденного: Угол СHD=угол CDH.
Тогда ∆CHD – равнобедренный с основанием HD.
У равнобедренного треугольника боковые стороны равны, тоесть CD=CH=23 см
Противоположные стороны параллелограмма попарно равны.
Следовательно: AD=BC=BH+HC=17+23=40 см; AB=CD=23 см.
Периметр параллелограмма – это сумма длин всех его сторон.
Тоесть Р=AD+AB+BC+CD=40+23+40+23=126 см.
ответ: 126 см.