деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). чис- ла на рисунке обозначают длины рёбер в сантиме- трах. найдите площадь поверхности этой детали. ответ дайте в квадратных сантиметрах.
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение Пусть a , b и c катеты и гипотенуза треугольника соответственно. 2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 . Площадь поверхности шара вычисляется по формуле S =4πR² , где R - радиус шара. Можем написать S₁=4πR₁²=4π(a/2)² =πa² ; S₂ =4πR₂²=4π(b/2)² =πb² ; Площадь поверхности наибольшего шара: S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂. * * * c² =a² +b² по теореме Пифагора * * *
Треугольники АМК и ВМС подобны за равными углами ∠М - общий ∠КАМ=∠МВС( ВСпаралельно АК углы КАВ и АВХ внутренние разносторонние а ∠АВХ=∠МВС- как вертикальные Углы АКС и МСВ равны аналогично ВС паралельно АК ∠АКСи∠КСУ равны как внутренние разносторонние а ∠КСУ=∠МСВ как вертикальные (ВС прслева от В на прямой ВС поставь Х а справа от С точку у) Треугольники подобны значит соответствующие стороны этих треугольников пропорциональны составим пропорцию АМ АМ/BM=AK/BC AM=AB+BM=4+8=12 12/8=18/BCза основным свойством пропорции произведение крайних членов равно произведению средних BC·12=8·18 ВС=8·18/12 BC=12
Гипотенуза и катеты прямоугольного треугольника являются диаметрами трёх шаров. Найдите площадь поверхности наибольшего шара, если площади поверхности меньших шаров равны S1 и S2.
Решение
Пусть a , b и c катеты и гипотенуза треугольника соответственно.
2R₁ =a ; 2R₂ =b ; 2R₃= c ⇒ R₁ =a/2 ; R₂ =b/2; R₃= c/2 .
Площадь поверхности шара вычисляется по формуле S =4πR² , где
R - радиус шара.
Можем написать
S₁=4πR₁²=4π(a/2)² =πa² ;
S₂ =4πR₂²=4π(b/2)² =πb² ;
Площадь поверхности наибольшего шара:
S₃ =4πR₃²=4π(c/2)² =πc² = π(a² +b²) =πa²+πb² =S₁+S₂.
* * * c² =a² +b² по теореме Пифагора * * *
ответ : S₁+S₂.
Углы АКС и МСВ равны аналогично ВС паралельно АК ∠АКСи∠КСУ равны как внутренние разносторонние а ∠КСУ=∠МСВ как вертикальные
(ВС прслева от В на прямой ВС поставь Х а справа от С точку у)
Треугольники подобны значит соответствующие стороны этих треугольников пропорциональны составим пропорцию АМ
АМ/BM=AK/BC AM=AB+BM=4+8=12
12/8=18/BCза основным свойством пропорции произведение крайних членов равно произведению средних
BC·12=8·18
ВС=8·18/12
BC=12