Детская площадка имеет форму прямоугольника, площадь которого равна 90 м2. Одна его сторона на 1 метр(-ов, -а) больше, чем другая. Детской площадке необходимо построить бордюр. В магазине продаётся материал для бордюра в упаковках. В одной упаковке имеется 8 метров(-а) материала.
1. Вычисли длину и ширину детской площадки.
Меньшая сторона детской площадки (целое число) равна:
м.
Объяснение:
1) Строю окружность с центром в т. О;
2) Беру т. В вне окружности , точку А на окружности, соединяем→ ВА- касательная ; из точки В провожу вторую касательную ВС.
3) Измеряю радиус ОА=3 см
Измеряю отрезки ВА и ВС ( это отрезки касательных) : ВА=4,1 см , ВС=4см. Примерно одинаковые⇒отрезки касательных проведенных из одной точки равны ( надо запомнить этот факт). Измеряю ВО=5,1 см.
Применяю т. Пифагора для ΔОАВ, ∠ВАО=90°.
ОВ²=5,1²=26,01≈26
ОА²+ВА²=3²+4,1²=9+16,81=25,81≈26 . Получили ОВ²=ОА²+ВА², т.е т. Пифагора выполняется .
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³
2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³