Дизайнер, чтобы дополнить прекрасный рисунок в виде равнобедренного треугольника на стене заказчика, решил провести прямую. Автор рисунка, являясь большим любителем геометрии, решил провести её следующим образом: она пройдёт через вершину угла при основании и разделит исходный треугольник на два треугольника, каждый из которых также является равнобедренным. Помогите дизайнеру найти углы исходного равнобедренного треугольника.
НЕ БЕРИТЕ РЕШЕНИЕ С РЕШУ ВПР ТАМ НЕПОНЯТН
Если радиус равен 2 √3 тогда длина хорды, стянутой дугой в 60 градусов будет равна радиусу так как образуется равносторонний треугольник если соединить края хорды с центром окружности в основании конуса. Если высота конуса равна 4√3 то высота треугольника , образованного в разрезе будет определяться по теореме Пифагора из треугольника образованного высотой конуса, высотой треугольника полученного в разрезе и высотой равностороннего треугольника полученного в результате соединения краев хорды с центром основания. Высота треугольника лежащего в основании конуса будет равна 3
Следовательно по теореме Пифагора высота разреза будет равна √(9+48)
Теперь чтоб узнать площадь разреза нужно найти площадь треугольника полученного в разрезе , а это произведение высоты √57 на основание 2 √3 и делим пополам. Получаем площадь разреза 3√19