Диагональ прямоугольника образует угол 21 с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника. ответ дайте в градусах.
Нам известно, что угол BAK = 30°, угол ABK = 120°, а сумма углов треугольника = 180°, следовательно, угол BKA = 180 - угол ABK - угол BAK = 30°. Угол BAK = угол BKA, следовательно, треугольник BAK - равнобедренный.
3) Если BC = 16, то BK = AB = 8. Так как ABCD - равнобедренная трапеция, то AB = CD = 8, угол BAD = угол CDA.
4) Проведем высоты BH и CP.
Рассмотрим треугольники ABH и DCP
Углы ABH и DCP равны 30°, так как сумма углов треугольника равна 180°
Свойство 30° в прямоугольном треугольнике: если в прямоугольном треугольнике присутствует угол, равный 30°, то катет, который лежит напротив этого угла, равен половине гипотенузы. Следовательно, AH = DP = 8/2 = 4.
5) Рассмотрим BHPC
Так как BC || AD (основания у трапеции параллельны), BH || CP(они оба перпендикулярны стороне AD, следовательно, параллельны друг другу), BHPC - прямоугольник, следовательно, BC = HP = 16.
1. 2√19 см.
2. 2√3 см.
3. ∠С=120°, BC=3,55 см, АС=6,68 см.
4. 14,2 см.
Объяснение:
По теореме косинусов:
CosC=(AC²+BC²-AB²)/2BC*AC; Cos120°= -1/2;
AB²=AC²+BC²-2AC*BC*Cos120°=4²+6²-2*4*6*(-1/2)=16+36+24=76;
AB=√76=2√19 см.
***
2. По теореме синусов:
BC/SinA=AB/SinC; BC=3√2; SinA=Sin60°=√3/2; Sin45°=√2/2.
AB=BC*SinC/SinA=3√2(√2/2)/(√3/2)=2√3 см.
***
∠С=180°-(∠A+∠B)=180°-(20°+40°)=180°-60°=120°.
По теореме синусов:
a/SinA=b/SInB=c/SinC; Sin120°=√3/2; Sin20°=0,342; Sin40°=
a=c*SinA/SinC=9*0,342/0,866=3,55см.
b=c*SinB/SinC=9*0,643/0,866=6,68 см.
***
4. Радиус окружности, описанной около треугольника находят по формуле:
R=(abc)/4√p(p-a)(p-b)(p-c);
p=(a+b+c)/2=(17+25+28)/2=70/2=35 см.
R=(17*25*28)/4√35(35-17)(35-25)(35-28)= 11 900/4√35*18*10*7=11 900/4√44 100=11 900/4*210=11 900/840=14,2 см.
1)Так как AK является биссектрисой, угол BAK = угол KAD = 60/2 = 30°.
Сумма односторонних углов трапеции = 180°, следовательно, угол ABK = 180 - 60 = 120°
2) Рассмотрим треугольник ABK.
Нам известно, что угол BAK = 30°, угол ABK = 120°, а сумма углов треугольника = 180°, следовательно, угол BKA = 180 - угол ABK - угол BAK = 30°. Угол BAK = угол BKA, следовательно, треугольник BAK - равнобедренный.
3) Если BC = 16, то BK = AB = 8. Так как ABCD - равнобедренная трапеция, то AB = CD = 8, угол BAD = угол CDA.
4) Проведем высоты BH и CP.
Рассмотрим треугольники ABH и DCP
Углы ABH и DCP равны 30°, так как сумма углов треугольника равна 180°
Свойство 30° в прямоугольном треугольнике: если в прямоугольном треугольнике присутствует угол, равный 30°, то катет, который лежит напротив этого угла, равен половине гипотенузы. Следовательно, AH = DP = 8/2 = 4.
5) Рассмотрим BHPC
Так как BC || AD (основания у трапеции параллельны), BH || CP(они оба перпендикулярны стороне AD, следовательно, параллельны друг другу), BHPC - прямоугольник, следовательно, BC = HP = 16.
Найдем AD: AD =AH + HP + PD = 4 + 16 + 4 = 24.
ответ: 24.