Диагональ ac1 прямоугольного параллелепипеда abcda1b1c1d1 равна 1 и образует с плоскостями abb1 и add1 углы d(альфа) и b(бета). найдите угол, который она образует с плоскостью abc.
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ). Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона. Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
Площадь = 150
Объяснение:
1) Сначала найдём острый угол:
Сумма всех углов многоугольника равна 360 градусов
360-(90+90+135) = 360-315 = 45 градусов.
2) Прямоугольную трапецию делим на прямоугольник и прямоугольный треугольник. Найдём оставшийся угол прямоугольного треугольника:
135-90 = 45 градусов
Прямоугольник получается равнобедренным.
3)Находим катеты прямоугольного треугольника:
1 катет это высота трапеции, то бишь первая меньшая сторона = 10, а значит и второй катет равен 10.
5)Находим большее основание трапеции, где меньшее основание трапеции равна 10 (2ая меньшая сторона) и катет прямоугольного треугольника равен 10:
10+10 = 20
6) Далее находим площадь прямоугольной трапеции, где её основания равны 10 и 20, а высота 10:
S = ((10+20)/2)*10 = (30/2)*10 = 15*10 = 150
P.s. Это не единственное решение
P.s.s Подробно так подробно)
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ).
Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона.
Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.