1. Фигура ABCK - параллелограмм. ( AB || CK, BC || AD => BC || AK ). Значит BC = AK = 8 см (по определению параллелограмма). Средняя линия трапеции равна полусумме оснований. В нашем случае основания: BC = 8 см, AD = AK + KD = 14 см. Тогда средняя линия равна (BC + AD)/ 2 = (8 + 14)/2 = 11 см.
2. Проведем вторую высоту из точки С к стороне AD. Получаем выосту CM. СM || BK, BC || KM => KBCM - параллелограмм ( в нашем случае он также явлется прямоугольником ). Значит BC = KM = 12 см. Так как трапеция равнобедренная => АК = MD. AK + MD = AD - BC = 28 - 12 = 16. AK = 16 / 2 = 8 см.
3. Рассмотрим треугольник ABD - прямоугольный. ( по условию угол B = 90° ) Угол A = 65°. Сумма углов в треугольнике всегда равна 180°, значит угол D = 180 - 65 + 90 = 25°. BC || AD, BD - секущая. Угол BDA = углу DBC = 25° ( накрест лежащие ). Треугольник ВСВ - равнобедренный ( BC = CD по условию) значит углы при основании равны => угол DBC = углу CDB = 25°. Так как сумма углов в тр-ке всегда равна 180° => угол С = 180 - 25 + 25 = 130°. Выходит угол А = 65 °, угол B = 90 + 25 = 115°, угол С = 130°, угол D = 25 + 25 = 50°.
P.S: давно не решал планиметрические задачи, могу намудрить, так что лучше проверьте решение на всякий случай :)
Найти углы треугольника FEP
ответ: ∠EFP = 60° ; ∠FEP = 46° ; ∠FPE = 74°
Объяснение:
∠EFP + ∠1 =180° (как смежные углы)
∠EFP =180° - ∠1 =180° - 120° = 60°
- - -
∠FEP +∠3 = 180° (соответствующие углы ) ⇒ a || b
∠FEP = 180° - 134 = 46°
∠FPE +∠EFP +∠FEP =180° (сумма внутренных углов треугольника) ;
∠FPE = 180° - ( ∠EFP +∠FEP) =180°-( 60° +46°) = 74°
можно начинать c вычисления углов ΔCBP
∠BCP =∠2 = 60° (вертикальные углы)
∠PBC + ∠3 = 180° ( смежные углы) ⇒
∠PBC = 180° - ∠3 = 180° - 134° = 46°
∠BPC =180° -(∠BCP+∠PBC) =180° -(60° +46°) =74°
∠FPE =∠BPC = 74° ( вертикальные углы )
∠FEP = 180° - (∠EFP +∠FPE ) =180° -( 60° +74°) = 46°
1. Фигура ABCK - параллелограмм. ( AB || CK, BC || AD => BC || AK ). Значит BC = AK = 8 см (по определению параллелограмма). Средняя линия трапеции равна полусумме оснований. В нашем случае основания: BC = 8 см, AD = AK + KD = 14 см. Тогда средняя линия равна (BC + AD)/ 2 = (8 + 14)/2 = 11 см.
2. Проведем вторую высоту из точки С к стороне AD. Получаем выосту CM. СM || BK, BC || KM => KBCM - параллелограмм ( в нашем случае он также явлется прямоугольником ). Значит BC = KM = 12 см. Так как трапеция равнобедренная => АК = MD. AK + MD = AD - BC = 28 - 12 = 16. AK = 16 / 2 = 8 см.
3. Рассмотрим треугольник ABD - прямоугольный. ( по условию угол B = 90° ) Угол A = 65°. Сумма углов в треугольнике всегда равна 180°, значит угол D = 180 - 65 + 90 = 25°. BC || AD, BD - секущая. Угол BDA = углу DBC = 25° ( накрест лежащие ). Треугольник ВСВ - равнобедренный ( BC = CD по условию) значит углы при основании равны => угол DBC = углу CDB = 25°. Так как сумма углов в тр-ке всегда равна 180° => угол С = 180 - 25 + 25 = 130°. Выходит угол А = 65 °, угол B = 90 + 25 = 115°, угол С = 130°, угол D = 25 + 25 = 50°.
P.S: давно не решал планиметрические задачи, могу намудрить, так что лучше проверьте решение на всякий случай :)