ответ: ∠A = 112° ; ∠B = 82° ; ∠C = 68° ; ∠D = 98°.
Объяснение: Обозначим середину окружности буквой O.
∠CBD и ∠CAD - вписанные (углы, у которых вершина на окружности, а стороны пересекают окружность).
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
⇒ ∠CBD = ∠CAD = 48°.
COD - треугольник.
Сумма внутренних углов треугольника равна 180°.
⇒ ∠DOC = 180° - (64° + 34°) = 180° - 98° = 82°.
Сумма смежных углов равна 180°.
⇒ ∠BOC = 180° - 82° = 98°.
COB - треугольник.
⇒ ∠OCB = 180° - (98° + 48°) = 180° - 146° = 34°.
⇒ ∠C = 34° * 2 = 68°.
Если четырёхугольник можно вписать в окружность, то сумма противоположных углов этого четырёхугольника равна 180°.
⇒ ∠A = 180° - 68° = 112°.
Если ∠CAD = 48° и ∠A = 112° ⇒ ∠CAB = 112° - 48° = 64°.
Вертикальные углы равны.
⇒ ∠DOC = ∠AOB = 82°.
AOB - треугольник.
⇒ ∠ABO = 180° - (64° + 82°) = 180° - 146° = 34°.
⇒ ∠B = 34° + 48° = 82°.
⇒ ∠D = 180° - 82° = 98°.
AB=5, BC=12, AC=13.
5² +12² = 25 + 144 = 169,
13² = 169. Треугольник АВС - прямоугольный, угол АВС - прямой.
Поэтому треугольник АМС лежит в вертикальной плоскости.
Проверим квадраты сторон треугольника ВМС:
ВМ=15, BC=12, МC=9.
9² +12² = 81 + 144 = 225,
15² = 225. Треугольник ВМС - прямоугольный, угол ВМС - прямой.
Угол α между плоскостями треугольника ABC и прямоугольника ABMN соответствует плоскому углу МВС.
α = arc sin(MC/BM) = arc sin(9/15) = arc sin(3/5) = 0,643501 радиан = 36,8699°.
ответ: ∠A = 112° ; ∠B = 82° ; ∠C = 68° ; ∠D = 98°.
Объяснение: Обозначим середину окружности буквой O.
∠CBD и ∠CAD - вписанные (углы, у которых вершина на окружности, а стороны пересекают окружность).
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
⇒ ∠CBD = ∠CAD = 48°.
COD - треугольник.
Сумма внутренних углов треугольника равна 180°.
⇒ ∠DOC = 180° - (64° + 34°) = 180° - 98° = 82°.
Сумма смежных углов равна 180°.
⇒ ∠BOC = 180° - 82° = 98°.
COB - треугольник.
Сумма внутренних углов треугольника равна 180°.
⇒ ∠OCB = 180° - (98° + 48°) = 180° - 146° = 34°.
⇒ ∠C = 34° * 2 = 68°.
Если четырёхугольник можно вписать в окружность, то сумма противоположных углов этого четырёхугольника равна 180°.
⇒ ∠A = 180° - 68° = 112°.
Если ∠CAD = 48° и ∠A = 112° ⇒ ∠CAB = 112° - 48° = 64°.
Вертикальные углы равны.
⇒ ∠DOC = ∠AOB = 82°.
AOB - треугольник.
Сумма внутренних углов треугольника равна 180°.
⇒ ∠ABO = 180° - (64° + 82°) = 180° - 146° = 34°.
⇒ ∠B = 34° + 48° = 82°.
Если четырёхугольник можно вписать в окружность, то сумма противоположных углов этого четырёхугольника равна 180°.
⇒ ∠D = 180° - 82° = 98°.