Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Находим основания медиан (точки пересечения медиан со сторонами).
А₁(Ха1;Уа1) Хв+Хс Ув+Ус х у
2 2 А₁ 4 0
В₁(Хв1;Ув1) Ха+Хс Уа+Ус х у
2 2 В₁ -2 -2
C₁(Хс1;Ус1) Ха+Хв Уа+Ув х у
2 2 С₁ 0 4.
Длины медиан:
АА₁ = √((Ха1-Ха)²+(Уа1-Уа)²)) = √104 ≈ 10,19803903
BB₁ = √((Хв1-Хв)²+(Ув1-Ув)²)) = √128 ≈ 11,3137085
CC₁ = √((Хc1-Хc)²+(Уc1-Уc)²)) = √104 ≈ 10,19803903
ответ: сумма длин медиан равна 31,70978655.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.