В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ученик1523
ученик1523
09.11.2021 07:26 •  Геометрия

Диагональ прямоугольника, вписанного в окружность, составляет со стороной угол 32°. Найдите градусные меры дут, на которые
делится окружность вершинами прямоугольника​

Показать ответ
Ответ:
asadhfdgj
asadhfdgj
05.08.2021 23:08

Пусть дан треугольник АВС с прямым углом А, в котором проведена биссектриса АЕ, длину которой нужно найти.

Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.

Запишем пропорцию:

\rm{\dfrac{AB}{BE}= \dfrac{AC}{CE}}

\mathrm{\dfrac{AB}{AC}= \dfrac{BE}{CE}}=\dfrac{a}{b}

Пусть \mathrm{AC}=x. Тогда \mathrm{AB}=\dfrac{a}{b} x.

Запишем теорему Пифагора для треугольника АВС:

\rm{AB^2+AC^2=BC^2}

\left(\dfrac{a}{b} x\right)^2+x^2=(a+b)^2

\dfrac{a^2}{b^2}\cdot x^2+x^2=(a+b)^2

\left(\dfrac{a^2}{b^2}+1\right)\cdot x^2=(a+b)^2

x^2=\dfrac{(a+b)^2}{\dfrac{a^2}{b^2}+1}

x^2=\dfrac{b^2(a+b)^2}{a^2+b^2}

x=\dfrac{b(a+b)}{\sqrt{a^2+b^2} }

Значит:

\mathrm{AC}=\dfrac{b(a+b)}{\sqrt{a^2+b^2} }

\mathrm{AB}=\dfrac{a}{b}\cdot \dfrac{b(a+b)}{\sqrt{a^2+b^2} }=\dfrac{a(a+b)}{\sqrt{a^2+b^2} }

Запишем теорему синусов для треугольника АЕС:

\rm{\dfrac{AE}{\sin C} =\dfrac{EC}{\sin EAC} }

Так как АЕ - биссектриса, то ЕАВ и ЕАС равны по половине прямого угла, то есть по 45°.

Синус угла С определим как отношение противолежащего катета к гипотенузе:

\rm{\sin C=\dfrac{AB}{BC} }

Теперь можем найти биссектрису:

\rm{AE =\dfrac{EC\cdot\sin C}{\sin EAC} }

\rm{AE =\dfrac{EC\cdot AB }{BC \cdot\sin EAC} }

\mathrm{AE} =\dfrac{b\cdot\dfrac{a(a+b)}{\sqrt{a^2+b^2} } }{(a+b) \cdot\sin 45^\circ}=\dfrac{\dfrac{ab}{\sqrt{a^2+b^2} } }{ \sin 45^\circ} }=\dfrac{\dfrac{ab}{\sqrt{a^2+b^2} } }{\dfrac{1}{\sqrt{2} } }=\dfrac{ab\sqrt{2}}{\sqrt{a^2+b^2}}

ответ: \dfrac{ab\sqrt{2}}{\sqrt{a^2+b^2}}


Из вершины прямого угла проведена биссектриса, делящая гипотенузу на отрезки а и b. Чему равна эта б
0,0(0 оценок)
Ответ:
aska311203
aska311203
12.06.2021 22:31

По данным координатам вершин определим длины их его сторон.

АВ2 = (Х2 – Х1)2 + (У2 – У1)2 = (1 – (-3))2 + (2 – (-1))2 = 16 + 9 = 25.

АВ = 5 см.

ВС2 = (5 – 1)2 + (-1 – 2)2 = 16 + 9 = 25.

ВС = 5 см.

СД2 = (1 – 5)2 + (-4 – (-1))2 = 16 + 9 = 25.

СД = 5 см.

АД2 = (1 – (-3))2 + (-4 – (-1))2 = 16 + 9 = 25.

АД = 5 см.

Все четыре стороны равны 5 см, четырехугольник квадрат или ромб. Определим длины диагоналей.

АС2 = (5 – (-3))2 + (-1 – (-1))2 = 64 + 0 = 64.

АС = 8 см.

ВД2 = (1 – 1)2 + (-4 – 2)2 = 0 + 36 = 36.

ВД = 6 см.

Диагонали разной длины, следовательно, четырехугольник ромб, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота