Диагональ прямоугольного параллелепипеда образует с вумя его гранями, имеющи- ми общее ребро, равные углы. Докажите, что грань, перпен- икулярная к общему реб- ру, — квадрат.
1)Наименьшая сторона лежит против наименьшего угла. В данном случае наименьший угол А(2), значит ВС - наименьшая сторона. ответ: BC
2)Так как треугольник равнобедренный, то у него две стороны равны, а третья - основание. Одинаковые стороны не могут быть меньше суммы основания, значит основание = 13 см. ответ: 13 см.
3) Дано: ABC-равнобедренный, AC-основание, AK и СМ-высоты, BM=8 см. Найти: ВК
4) Дано: треугольник АВС - прямоугольный, ∠С=90°, АВ=54 см, ∠А=45°.Найти СН.СН - высота треугольника и кратчайшее расстояние от т. С до прямой АВ.
Δ АВС - равнобедренный, т.к. ∠А=∠В=45°, ⇒ АС=СВ, АН=ВН=54:2=27 см. Найдем высоту СН по теореме Пифагора: СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
5) ΔСАК=ΔАКР, так как ∠САК=∠КАР (АК-биссектриса по условию), гипотенуза АК-общая. В равных треугольниках против равных углов лежат равные стороны⇒СК=КР, ч.т.д.
1)Наименьшая сторона лежит против наименьшего угла. В данном случае наименьший угол А(2), значит ВС - наименьшая сторона. ответ: BC
2)Так как треугольник равнобедренный, то у него две стороны равны, а третья - основание. Одинаковые стороны не могут быть меньше суммы основания, значит основание = 13 см. ответ: 13 см.
3) Дано: ABC-равнобедренный, AC-основание, AK и СМ-высоты, BM=8 см. Найти: ВК
Решение: Рассмотрим треугольник АБК и БМС-прямоугольные треугольники, AB=BC(т.к. треуг. АБС - равнобедренный), угол Б-общий, =>, треуг. АБК=треуг.БМС (гипотенуза и острый угол),=>МБ=БК=8см ответ: БК=8см
4) Дано: треугольник АВС - прямоугольный, ∠С=90°, АВ=54 см, ∠А=45°.Найти СН.СН - высота треугольника и кратчайшее расстояние от т. С до прямой АВ.
Δ АВС - равнобедренный, т.к. ∠А=∠В=45°, ⇒ АС=СВ, АН=ВН=54:2=27 см. Найдем высоту СН по теореме Пифагора: СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
5) ΔСАК=ΔАКР, так как ∠САК=∠КАР (АК-биссектриса по условию), гипотенуза АК-общая. В равных треугольниках против равных углов лежат равные стороны⇒СК=КР, ч.т.д.
7.
Что-то требование я не нахожу, так что найду все углы.
∠BOC = 137° => <COD = 180-137 = 43°
CO == CD => <COD == <CDO = 43° => <OCD = 180-(43+43) = 94°
<COD вертикален с углом <AOB => <AOB == <COD = 43°
AO == AB => <OAB & <ABO = (180-43)/2 = 68.5°.
ответ: <COD = 43°, <OCD = 94°, <AOB == <COD = 43°, <ABO == <OAB = 68.5°.
5.
<BCD = 180-120 => <BCA = 60°
AB == BC => <BAC == <BCA = 60°
<B = 180-(60+60) = 60°.
6. AB == BC => <C == <A = 50°
<B = 180-(50+50) = 80°
Предполагаю, AD — это бисектриса.
<DAC = 50/2 = 25°
<ADC = 180-(50+25) = 105°.