Диагональ равносторонней трапеции равна 60 градусам перпендикулярно боковой стенке. Если большое основание равно 8√3, а трапеция находится под одним острым углом, найдите площадь трапеции. (переводил в переводчике)
Найти :Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.
Следовательно,
Площадь прямоугольного треугольника равна половине произведения его катетов.
Следовательно, ед².
ответ :
64 ед².
- - -
70. ABCD - прямоугольник. Найдите .
- - -Дано :
Четырёхугольник ABCD - прямоугольник.
АС - диагональ.
HD⊥АС.
HD = 6, АН = 9.
Найти :Решение :Прямоугольник - это параллелограмм, все углы которого прямые.
Следовательно ∠D = 90°.
Рассмотрим ΔACD - прямоугольный.
В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.
Следовательно,
Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.
Следовательно, ед².
Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.
14) Так как P=2*(a+b), следовательно a+b = P/2. Тогда 3 + b = 9.2 и b = 9.2-3=6.2. 7 + b = 9.2, тогда b = 9.2 - 7 = 2.2
15) P=24 a1=x, b1 = x+4, следовательно 24 = 2*(x+x+4), 12 = 2x +4, 2x=8, x=4. Тогда a = 4, b = 8. P=24 a1=x, b1 = x-6, следовательно 24 = 2*(x+x-6), 12 = 2x -6, 2x=18, x=9. Тогда a = 9, b = 3. P=24 a1=x, b1 = 2x, следовательно 24 = 2*(x+2x), 12 = 3x, x=4. Тогда a = 4, b = 8.
16) a+b = 12 и a:b = 1:2, следовательно a=x b =2x, тогда x+2x=12, x=4 и a=4 b = 8
a+b = 12 и a:b = 3:2, следовательно a=3x b =2x, тогда 3x+2x=12, x=2.4 и a=7.2 b = 4.8
17)в параллелограмме противоположные углы равны,а односторонние в сумме дают 180 градусов. Следовательно в параллелограмме два угла по 42 градуса и 2 угла по 180-42 = 138 градусов.
68. По данным на рисунке найдите площадь .
- - -Дано :ΔСКВ - прямоугольный (∠С = 90°).
СК - высота (СК⊥АВ).
АК = 4, КВ = 16.
Найти :Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.Следовательно,
Площадь прямоугольного треугольника равна половине произведения его катетов.Следовательно, ед².
ответ :64 ед².
- - -70. ABCD - прямоугольник. Найдите .
- - -Дано :Четырёхугольник ABCD - прямоугольник.
АС - диагональ.
HD⊥АС.
HD = 6, АН = 9.
Найти :Решение :Прямоугольник - это параллелограмм, все углы которого прямые.Следовательно ∠D = 90°.
Рассмотрим ΔACD - прямоугольный.
В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.Следовательно,
Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.Следовательно, ед².
Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.Тогда = 2*39 ед² = 78 ед².
ответ :78 ед².
Периметр равен P=2*(a+b)
12) P1 = 2*(6+4)=20 P2 = 2*(11.5+7)=37
13) Пусть а=12,4, следовательно b1 = 12.4 - 0.8 = 11.6, b2 = 12.4 + 1.6 = 14, b3 = 12.4 / 4 = 3.1. Тогда P1 = 2*(12.4+11.6) = 48? P2 = 2*(12.4 + 14) = 52.8, P3= 2*(12.4+3.1)=31
14) Так как P=2*(a+b), следовательно a+b = P/2. Тогда 3 + b = 9.2 и b = 9.2-3=6.2. 7 + b = 9.2, тогда b = 9.2 - 7 = 2.2
15) P=24 a1=x, b1 = x+4, следовательно 24 = 2*(x+x+4), 12 = 2x +4, 2x=8, x=4. Тогда a = 4, b = 8. P=24 a1=x, b1 = x-6, следовательно 24 = 2*(x+x-6), 12 = 2x -6, 2x=18, x=9. Тогда a = 9, b = 3. P=24 a1=x, b1 = 2x, следовательно 24 = 2*(x+2x), 12 = 3x, x=4. Тогда a = 4, b = 8.
16) a+b = 12 и a:b = 1:2, следовательно a=x b =2x, тогда x+2x=12, x=4 и a=4 b = 8
a+b = 12 и a:b = 3:2, следовательно a=3x b =2x, тогда 3x+2x=12, x=2.4 и a=7.2 b = 4.8
17)в параллелограмме противоположные углы равны,а односторонние в сумме дают 180 градусов. Следовательно в параллелограмме два угла по 42 градуса и 2 угла по 180-42 = 138 градусов.