Пусть А, В и С - это вершины треугольника, причем А и В - вершины при основании. Точка пересечения боковых медиан - О. Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3). В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2. Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ). Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ). АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6. S = СМ * АВ /2 = 6 * 4 / 2 = 12.
Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3).
В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2.
Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ).
Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ).
АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6.
S = СМ * АВ /2 = 6 * 4 / 2 = 12.
сумма всех углов треугольника равна 180 градусам. у нас известны два угла из трех ( b = 60, c = 90 ). поэтому мы можем найти третий угол:
180 - 60 - 90 = 30 ( это угол a )
в есть следующая теорема:
"в прямоугольном треугольнике катет, лежайщий против угла в 30 градусов, равен половине гипотенузы."
в данном треугольнике гипотенузой является ab (так как эта сторона лежит против угла в 90 градусов), катетами являются ac и cb.
из теоремы выше понятно, что ab = 2cb
известно, что ab + bc = 111
теперь выразим ab: ab = 111 - bc
теперь все это запишем в уравнение:
мы знаем, что ab можно выразить двумя способами: ab = 111 - bc и ab = 2cb
поэтому можно их прировнять
ab = ab
или
111 - bc = 2cb
111 = 3cb
cb = 111 / 3
так как ab = 2cb, ab = 2 * 111 / 3 = 74