Диагональ трапеции abcd делит ее на два прямоугольных треугольника найдите среднюю линию трапеции если площадь треугольника acd равна 144 см в квадрате.
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
Поскольку предложение "меньшее основание равно 2 в 4 степени корня из 3" не совсем понятно, примем, что меньшее основание равно 2 корня 4 степени из 3. Чтобы не путаться с корнями, пусть корень 4-й степени из 3 равен "а". Тупой угол в прямоугольной трапеции может быть только один. Следовательно, ВС=CD=2a и <BCD=120°. Опустим высоту СН. Тогда <HCD= 120°-90°=30°. В прямоугольном треугольнике НСD катет HD лежит против угла 30° и значит равен "а". Тогда катет СН (высота трапеции) равен а√3. AD=BC+HD или AD=2a+a=3a. Площадь трапеции равна S=(AD+BC)*CH/2 = (2а+3a)*a√3/2 =a²*5√3/2. Вспомним, что а= 3^(1/4). Тогда а²=3^(1/2) = √3. S=√3*5√3/2 = 7,5 ед².
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg
2 корня 4 степени из 3.
Чтобы не путаться с корнями, пусть корень 4-й степени из 3 равен "а".
Тупой угол в прямоугольной трапеции может быть только один.
Следовательно, ВС=CD=2a и <BCD=120°.
Опустим высоту СН. Тогда <HCD= 120°-90°=30°.
В прямоугольном треугольнике НСD катет HD лежит против угла 30° и значит равен "а". Тогда катет СН (высота трапеции) равен а√3.
AD=BC+HD или AD=2a+a=3a.
Площадь трапеции равна
S=(AD+BC)*CH/2 = (2а+3a)*a√3/2 =a²*5√3/2.
Вспомним, что а= 3^(1/4). Тогда а²=3^(1/2) = √3.
S=√3*5√3/2 = 7,5 ед².