Диагонали четырехугольника abcd пересекаются в точке o. ob=3см od=12см oc=5см oa=20см. доказать что abcd трапеция. найти a) отношение ad к bc. b) отношение периметров и площадей треугольников boc и aod
Середина боковой стороны лежит на средней линии треугольника, параллельной основанию. вершина треугольника удалена от основания в два раза дальше, чем средняя линия, значит высота, опушенная на основания h=2·9=18 см. высота, проведённая к основанию равнобедренного треугольника, является его медианой, значит точка пересечения медиан лежит на высоте треугольника. точка пересечения медиан делит каждую медиану на отрезки в отношении 2: 1 считая от вершины, значит искомое расстояние - это треть от всей высоты, то есть 18/3=6 см - это ответ.
Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон. a^2 = b^2 + c^2 -2 ab* cosC a^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos 120= 136 - 120* cos120 =136 - 98 = 38 извлекаем квадратный корень а = 6,2 см третья сторона треугольника
a^2 = b^2 + c^2 -2 ab* cosC
a^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos 120= 136 - 120* cos120 =136 - 98 = 38
извлекаем квадратный корень
а = 6,2 см третья сторона треугольника