Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
В равных треугольниках соответственные стороны равны.
В ΔCDE задана только одна сторона СЕ = 11 см, тогда как в ΔHOF заданы 2 стороны (HO =4,7 см и OF = 10,5 см); так как среди двух заданных сторон треугольника HOF нет ни одной стороны, равной 11 см, то делаем вывод о том, что третья сторона ΔHOF равна стороне СЕ ΔCDE:
НF = CE = 11 см.
2) Из п. 1 решения следует, что:
вершине Н треугольника HOF соответствует вершина С в треугольнике CDE;
вершине F треугольника HOF соответствует вершина Е в треугольнике CDE.
Следовательно:
вершине О треугольника HOF соответствует вершина D в треугольнике CDE, откуда:
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
CD = 4,7 см; DE = 10,5 см; HF = 11 см.
Объяснение:
1) Согласно условию задачи, ΔCDE = ΔHOF.
В равных треугольниках соответственные стороны равны.
В ΔCDE задана только одна сторона СЕ = 11 см, тогда как в ΔHOF заданы 2 стороны (HO =4,7 см и OF = 10,5 см); так как среди двух заданных сторон треугольника HOF нет ни одной стороны, равной 11 см, то делаем вывод о том, что третья сторона ΔHOF равна стороне СЕ ΔCDE:
НF = CE = 11 см.
2) Из п. 1 решения следует, что:
вершине Н треугольника HOF соответствует вершина С в треугольнике CDE;
вершине F треугольника HOF соответствует вершина Е в треугольнике CDE.
Следовательно:
вершине О треугольника HOF соответствует вершина D в треугольнике CDE, откуда:
CD = HO = 4,7 см;
DE = OF = 10,5 см.
ответ: остальные стороны треугольника CDE:
CD = 4,7 см; DE = 10,5 см;
неизвестная сторона треугольника HOF HF= 11 см.