Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2: 5. вычисли периметр трапеции, меньшее основание которой равно высоте и равно 8,8 см. ответ округли до десятых.
В чем же особенность этих задач? Задачи на построение не просты. Не существует единого алгоритма для решения всех таких задач. Каждая из них по-своему уникальна, и каждая требует индивидуального подхо да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания. Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
да для решения. Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания.
Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.
Координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Следовательно,
1). Xd=(Xa+Xb)/2 => Xa=2*Xd - Xb => Xa= -2-8= -10.
Yd=(Ya+Yb)/2 => Ya=2*Yd - Yb => Ya= 14-5= 9. Точка А(-10;9)
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
CD=√((Xd-Xc)²+(Yd-Yc)²)=√((3-(-6))²+(-4-1)²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.