В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
AndreyVisaGold
AndreyVisaGold
09.10.2022 08:06 •  Геометрия

Диагонали равносторонней трапеции перпендикулярны. Найти площадь трапеции, если ее основания равны 8 см и 20 см.​

Показать ответ
Ответ:
1KateWeg1
1KateWeg1
15.10.2020 14:49

Объяснение:

Если трапеция равнобедренная и диагонали перпендикулярны ,то высота равна средней линии.

h=m

m=(8+20):2= 14 см

S=hm=m²=14²= 196 см²

0,0(0 оценок)
Ответ:
яна1766
яна1766
15.10.2020 14:49

196см²

Объяснение:

1-ый

Соединим середины сторон трапеции. Если в равнобедренной трапеции соединить середины оснований, то, согласно замечательному свойству трапеции, на этом отрезке будет лежать точка пересечения диагоналей (это свойство нужно доказывать). Учитывая наше условие, получатся равнобедренные прямоугольные треугольники, откуда несложно понять, что высота будет равна средней линии. Тогда искомая площадь вычисляется по формуле S=\dfrac{(a+b)^2}{4}. Откуда получаем ответ 196см².

2-ой

Допустим, мы не увидели 1-ый В школе не всегда рассказывают замечательное свойство трапеции. Доказательство этого свойства достаточно интересное, поэтому до него можно не додуматься. Для такого случая есть 2-ой получения ответа.

Проведем DF⊥BC. Тогда BEDF - прямоугольник или квадрат. Докажем, что площадь полученного четырехугольника равна площади трапеции и что этот четырехугольник квадрат.

Пусть S_k - площадь нового четырехугольника, а S - площадь трапеции.

Заметим, что ΔABE=ΔCDF (AB=CD, так как трапеция равнобедренная, BE=DF - расстояния между параллельными прямыми равны и треугольники прямоугольные). Тогда S_{ABE}=S_{CDF}=S_t.

S=S_t+S_{BEDC}\\S_k=S_t+S_{BEDC}

Значит S=S_k

Значит четырехугольники равновеликие.

Перейдем ко 2-ому пункту доказательства:

Площадь произвольного четырехугольника, а, следовательно, и трапеции, вычисляется по формуле:

S=\dfrac{1}{2}d_1d_2\times\sin\alpha

По условию \alpha=90^\circ, а d_1=d_2=d, так как трапеция равнобедренная (можно доказать, что d_1=d_2, из равенства треугольников ABC и BCD).

Тогда формула выше для нашего случая примет вид:

S=\dfrac{d^2}{2}

Четырехугольник BEDF содержит диагональ трапеции. И у прямоугольника, и у квадрата диагонали равны. Тогда пусть диагонали пересекаются под углом \beta.

Получим:

S_k=\dfrac{d^2}{2}\times\sin\beta

Выше говорилось, что S=S_k.

Значит:

\dfrac{d^2}{2}=\dfrac{d^2}{2}\times\sin\beta\\\sin\beta=1\\\beta=90^\circ

Тогда BEDF - квадрат. Значит высота трапеции равна его стороне.

Так, мы доказали, что площадь равнобедренной трапеции, диагонали которой перпендикулярны, вычисляется по формуле:

S=\dfrac{a+b}{2}\times\left(a+\dfrac{b-a}{2}\right)=\dfrac{\left(a+b\right)^2}{4}

Воспользуемся ей, чтобы получить ответ:

S=\dfrac{(8+20)^2}{4}=196см².

Задача решена!


Диагонали равносторонней трапеции перпендикулярны. Найти площадь трапеции, если ее основания равны 8
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота