Пусть ромб имеет сторону a и диагонали d1 и d2. Тогда a = sqrt((d1/2)^2+(d2/2)^2)=sqrt(d1^2+d2^2)/2. Теперь рассмотрим треугольник, у которого две стороны равны a, третья сторона является d1. Искомый острый угол находится в этом треугольнике между сторонами, равными a. Площадь этого треугольника можно найти двумя 1) S=1/2 * d1 * d2/2 = d1*d2/4 2) S=1/2 * sin(fi) * a * a = 1/2 * sin(fi) * (sqrt(d1^2+d2^2)/2)^2 = 1/2 * sin(fi) * (d1^2+d2^2) / 4=(d1^2+d2^2)*sin(fi)/8 Приравняем их и получим: d1*d2/4=(d1^2+d2^2)*sin(fi)/8, sin(fi)=2*d1*d2/(d1^2+d2^2) Подставим значения: sin(fi)=2*3*4/(3^2+4^2)=24/25
Теперь рассмотрим треугольник, у которого две стороны равны a, третья сторона является d1. Искомый острый угол находится в этом треугольнике между сторонами, равными a. Площадь этого треугольника можно найти двумя
1) S=1/2 * d1 * d2/2 = d1*d2/4
2) S=1/2 * sin(fi) * a * a = 1/2 * sin(fi) * (sqrt(d1^2+d2^2)/2)^2 = 1/2 * sin(fi) * (d1^2+d2^2) / 4=(d1^2+d2^2)*sin(fi)/8
Приравняем их и получим:
d1*d2/4=(d1^2+d2^2)*sin(fi)/8,
sin(fi)=2*d1*d2/(d1^2+d2^2)
Подставим значения:
sin(fi)=2*3*4/(3^2+4^2)=24/25