Диагонали трапеции abcd пересекаются в точке o. площади треугольников boc и aod относятся как 1: 9. диагонали трапеции 16 см и 24 см.найдите длины отрезков ,на которые очка o делит диагонали. с !
Вычисления таких задач проще простого. Сумма углов треугольника равна 180 градусов, углы при основании (beta) равны. Отсюда на все случаи углов при вершине alpha следует применять формулу
beta=(180-alpha)/2.
Если угол при вершине 110 градусов, то у основания равнобедренного треугольника углы равны
beta=(180-110)/2=35 (градусов).
Пусть задан угол при основании равнобедренного треугольника и он равен 50 градусов, тогда угол при вершине равен
alpha=180-2*50=80 (градусов).
Меняете в формуле значения угла (50) на свой и находите угол в вершине треугольника для любого равнобедренного треугольника.
По мере изучения свойств треугольника, формулы для вписанных и описанных окружностей, возрастает и сложность вычислений и разнообразие задач, которые можно решить. Таким образом в 8-9 классе задачи на треугольники требуют знаний немало важных формул без которых вычисления невозможно выполнить.
Внешний угол с внутренним в сумме дают 180 градусов. В равнобедренном треугольнике внешний угол при основании равен 140 градусов, значит внутренний угол при основании равен 180- 140 = 40 градусов. А в равнобедренном треугольнике углы при основании равны, значит и второй угол при основании треугольника равен 40 градусов. Сумма внутренних углов треугольника равна 180 градусов, тогда третий угол при вершине треугольника равен 180-(40+ 40) = 100 градусов. И внешний угол при вершине р/б треугольника равен 180-100 = 80 градусов.
Вычисления таких задач проще простого. Сумма углов треугольника равна 180 градусов, углы при основании (beta) равны. Отсюда на все случаи углов при вершине alpha следует применять формулу
beta=(180-alpha)/2.
Если угол при вершине 110 градусов, то у основания равнобедренного треугольника углы равны
beta=(180-110)/2=35 (градусов).
Пусть задан угол при основании равнобедренного треугольника и он равен 50 градусов, тогда угол при вершине равен
alpha=180-2*50=80 (градусов).
Меняете в формуле значения угла (50) на свой и находите угол в вершине треугольника для любого равнобедренного треугольника.
По мере изучения свойств треугольника, формулы для вписанных и описанных окружностей, возрастает и сложность вычислений и разнообразие задач, которые можно решить. Таким образом в 8-9 классе задачи на треугольники требуют знаний немало важных формул без которых вычисления невозможно выполнить.
Объяснение:
лАЙК