Диагонали трапеции ABCD пересекаются в точке О. Точка пересечения диагоналей трапеции делит диагональ AC на отрезки длиной 12 см и 6 см. Найдите основания трапеции AD и ВС, если их разность равна 15 см. Выполните чертеж по условию задачи.
Пусть у нас введна некая мера длины t, такая, что длины сторон 3*t, 4*t, 5*t, 7*t, 8*t. Шестая сторона нам не известна.
Пусть x, y, z, u, v, w - различные отрезки сторон от вершины до точки касания, причем выраженные в системе измерения длины t (то есть длина отрезка в сантиметрах равна x*t, y*t, и так далее). Стороны равны сумме двух таких отрезков каждая, включая шестую. Запишем 5 известных соотношений.
x + y = 3;
y + z = 4;
z + u = 5;
u + v = 7;
v + w = 8;
нам надо выяснить, чему равно w + x;
последовательно исключаем переменные y z u v;
x - z = -1; Вычли из первого второе.
x + u = 4; Прибавили третье.
x - v = -3; Вычли четвертое.
x + w = 5; Прибавили пятое. Значит шестая сторона равна третьей.
Итак, пропорцию можно закончить так 3:4:5:7:8:5; :)))
Осталось вычислить t.
80 = t*(3 + 4 + 5 + 7 + 8 + 5) = 32*t; t = 10/4,
Шестая сторона будет 50/4, то есть 12,5
1) Если прямоугольник вписан в окружность, то его диагональ - диаметр этой окр-сти, тогда ВD= 2*R=2*5=10.
2)Пусть АВ =а, ВС =b, тогда по теореме Пифагора а^2+b^2=BD^2
Эту задачу можно решить двумя .
1) Геометрический.
Так как плоскость отсекает на осях равные отрезки, то углы между осями и плоскостью равны.
Для примера возьмём угол к оси Oz.
Угол между прямой и плоскостью равен плоскому углу между этой прямой и её проекцией на плоскость.
Проекция оси Oz на плоскость лежит на прямой АД.
ОД = 4*cos 45 = 4*(√2/2) = 2√2.
Угол α = arc tg (2√2/4) = arc tg(√2/2) = 35,264 градуса.
2) Векторный.
Уравнение плоскости "в отрезках" (x/4) + (y/4) + (z/4) = 1.
В общем виде x + y + z - 4 = 0.
Направляющий вектор плоскости N = (1; 1; 1), его модуль равен √3.
Косинус угла между направляющим вектором плоскости и осью Oz равен: cos β = 1/√3. Сам угол равен arc cos(1/√3) = 54,7356 градуса.
Угол между нормалью к плоскости (прямой ее содержащей) и осями в сумме с искомым углом дают 90 градусов.
Тогда α = 90 - β = 90 - 54,7356 = 35,2644 градуса.
Пусть у нас введна некая мера длины t, такая, что длины сторон 3*t, 4*t, 5*t, 7*t, 8*t. Шестая сторона нам не известна.
Пусть x, y, z, u, v, w - различные отрезки сторон от вершины до точки касания, причем выраженные в системе измерения длины t (то есть длина отрезка в сантиметрах равна x*t, y*t, и так далее). Стороны равны сумме двух таких отрезков каждая, включая шестую. Запишем 5 известных соотношений.
x + y = 3;
y + z = 4;
z + u = 5;
u + v = 7;
v + w = 8;
нам надо выяснить, чему равно w + x;
последовательно исключаем переменные y z u v;
x - z = -1; Вычли из первого второе.
x + u = 4; Прибавили третье.
x - v = -3; Вычли четвертое.
x + w = 5; Прибавили пятое. Значит шестая сторона равна третьей.
Итак, пропорцию можно закончить так 3:4:5:7:8:5; :)))
Осталось вычислить t.
80 = t*(3 + 4 + 5 + 7 + 8 + 5) = 32*t; t = 10/4,
Шестая сторона будет 50/4, то есть 12,5
1) Если прямоугольник вписан в окружность, то его диагональ - диаметр этой окр-сти, тогда ВD= 2*R=2*5=10.
2)Пусть АВ =а, ВС =b, тогда по теореме Пифагора а^2+b^2=BD^2
а^2+b^2=100
C другой стороны: a*b= 48. Решим систему ур-ий:
{ а^2+b^2=100
a*b= 48 I *2 и сложим уравнения
{ а^2+b^2=100
2* a*b= 48 *2
а^2+b^2+ 2* a*b =196
(a+b)^2= 14^2
a+b= 14
P = 2*(a+b) =2*14=28
ответ : 28.