Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Вспомним, что называем сечением
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см