А) Используем формулу площади равнобедренного треугольника: S = (1/2)L²sinβ, где L- образующая конуса. Отсюда . В осевом сечении угол при вершине треугольника равен 2α. Площадь осевого сечения So = (1/2)L²sin(2α) = (1/2)*(2S/sinβ)*(sin(2α) = (S*sin(2α)/sin β. б) Площадь осевого сечения усечённого конуса, полученного сечением данного конуса плоскость, проходящей через середину его высоты. составляет 3/4 от осевого сечения полного конуса. Это потому, что отнимается половина основания треугольника и половина высоты - итого 1/4 площади. Тогда Soу = (3/4)* (S*sin(2α)/sin β = (3*S*sin(2α)/(4*sin β).
Пусть градусная мера одной части будет х. Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х. Окружность содержит 360°, ⇒ 3х+4х+5х=360° ⇒ х=30° 1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒ По свойству градусной величины вписанного угла он равен половине этой дуги: 90°:2=45° 2) Дуга ВС равна 30°*4=120° На эту дугу опирается вписанный угол САВ; он равен её половине: 120°:2=60° 3)Дуга АС равна 30°*5=150° На эту дугу опирается угол АВС, и он равен её половине: 150°:2=75° Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°
S = (1/2)L²sinβ, где L- образующая конуса.
Отсюда .
В осевом сечении угол при вершине треугольника равен 2α.
Площадь осевого сечения So = (1/2)L²sin(2α) = (1/2)*(2S/sinβ)*(sin(2α) = (S*sin(2α)/sin β.
б) Площадь осевого сечения усечённого конуса, полученного сечением данного конуса плоскость, проходящей через середину его высоты. составляет 3/4 от осевого сечения полного конуса.
Это потому, что отнимается половина основания треугольника и половина высоты - итого 1/4 площади.
Тогда Soу = (3/4)* (S*sin(2α)/sin β = (3*S*sin(2α)/(4*sin β).
Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х.
Окружность содержит 360°, ⇒
3х+4х+5х=360° ⇒
х=30°
1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒
По свойству градусной величины вписанного угла он равен половине этой дуги:
90°:2=45°
2) Дуга ВС равна 30°*4=120°
На эту дугу опирается вписанный угол САВ; он равен её половине:
120°:2=60°
3)Дуга АС равна 30°*5=150°
На эту дугу опирается угол АВС, и он равен её половине:
150°:2=75°
Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°