На рисунке изображена окружность . Диаметр окружности АВ=26.Хорды CD и EF параллельны и равны 24 и 10 соответственно .Чему равно расстояние между хордами CD и EF ?
Объяснение:
1) АВDC-равнобедренная трапеция .Пусть DP⊥AB, тогда по свойству равнобедренной трапеции АР=(26+24):2=25 ,РВ=(26-24):2=1.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(25*1)=5 .
2) АВFE-равнобедренная трапеция .Пусть FM⊥AB, тогда по свойству равнобедренной трапеции АM=(26+10):2=18 ,MВ=(26-10):2=8.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(18*8)=12 .
3)Расстояние между хордами CD и EF равно разности отрезков
DP-АМ=12-5=7 .
===============================================
Свойство равнобедренной трапеции : Высота , опущенная из вершины на большее основание , делит его на большой отрезок , который равен полусумме оснований и меньший - равен полуразности оснований
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу.
Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
На рисунке изображена окружность . Диаметр окружности АВ=26.Хорды CD и EF параллельны и равны 24 и 10 соответственно .Чему равно расстояние между хордами CD и EF ?
Объяснение:
1) АВDC-равнобедренная трапеция .Пусть DP⊥AB, тогда по свойству равнобедренной трапеции АР=(26+24):2=25 ,РВ=(26-24):2=1.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(25*1)=5 .
2) АВFE-равнобедренная трапеция .Пусть FM⊥AB, тогда по свойству равнобедренной трапеции АM=(26+10):2=18 ,MВ=(26-10):2=8.
Для прямоугольного ΔADB высота, проведенная на гипотенузу DP=√(18*8)=12 .
3)Расстояние между хордами CD и EF равно разности отрезков
DP-АМ=12-5=7 .
===============================================
Свойство равнобедренной трапеции : Высота , опущенная из вершины на большее основание , делит его на большой отрезок , который равен полусумме оснований и меньший - равен полуразности оснований
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу.
Рассмотрим прямоугольный треугольник MNP. NH - высота, проведённая к гипотенузе, следовательно, она является средним геометрическим для отрезков MH и HP.
Следовательно :
Тогда площадь прямоугольного треугольника MNP равна половине произведения высоты и стороны, к которой проведена эта высота.
MP - диагональ. Диагональ параллелограмма делит параллелограмм на два равных (в частности и на равновеликих) треугольника. Следовательно, площадь прямоугольника MNPK равна произведению площади треугольника MNP на два.
S(MNPK) = 39*2 = 78.
ответ: 78 (ед^2).