Красный, синий и большой треугольники подобны - одинаковый острый угол, и прямой x/z = 9/16 z/y = 9/16 y = 16z/9 x = 9z/16 Теорема Пифагора для красного треугольника x² + z² = 9² (9z/16)² + z² = 9² 81/256*z² + z² = 81 (81 + 256)/256*z² = 81 337z² = 81*256 z² = 81*256/337 z = 9*16/√337 = 144/√337 см x = 9z/16 = 81/√337 см y = 16z/9 = 256/√337 см Малый катет большого треугольника x + z = (144 + 81)/√337 = 225/√337 см Большой катет большого треугольника y + z = (256 + 144)/√337 = 400/√337 см Площадь S = 1/2*225/√337*400/√337 = 45000/337 см²
Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
x/z = 9/16
z/y = 9/16
y = 16z/9
x = 9z/16
Теорема Пифагора для красного треугольника
x² + z² = 9²
(9z/16)² + z² = 9²
81/256*z² + z² = 81
(81 + 256)/256*z² = 81
337z² = 81*256
z² = 81*256/337
z = 9*16/√337 = 144/√337 см
x = 9z/16 = 81/√337 см
y = 16z/9 = 256/√337 см
Малый катет большого треугольника
x + z = (144 + 81)/√337 = 225/√337 см
Большой катет большого треугольника
y + z = (256 + 144)/√337 = 400/√337 см
Площадь
S = 1/2*225/√337*400/√337 = 45000/337 см²