Диктант . Двугранные углы. Многогранные углы. Многогранники 1. Что такое двугранный угол (трехгранный угол)?
2. Какими фигурами являются грани трехгранных углов (грани двугранных углов)?
3. Постройте трехгранный угол. Укажите ребра, грани. Запишите обозначение трехгранного угла. (Постройте линейный угол двугранного угла. Запишите обозначение двугранного угла и линейного угла двугранного угла.)
4. Какими фигурами являются ребра трехгранных углов (двугранных углов)?
5. Что такое многогранник? (Какой многогранник называется выпуклым?)
6. Начертите куб. Сколько у куба ребер? Обозначьте ребра, выходящие из одной вершины. (Начертите куб. Сколько у куба вершин? Обозначьте вершины, принадлежащие одной грани.)
Вектор РC{-5;8;-1} (из координат начала вычитаем координаты конца), его середина -
точка М(1,5;-1;1,5) (координаты середины отрезка PC находим по формуле
x=(x1+x2)/2, y=(y1+y2)/2, z=(z1+z2)/2).
Уравнение плоскости, проходящей через точку М(Хо;Yo;Zo) перпендикулярно вектору
PC{n1;n2;n3}, выражается формулой:
n1(X-Xo)+n2(Y-Yo)+n3(Z-Zo)=0.
В нашем случае: -5Х+7,5+8Y+8-Z+1,5=0 или 5Х-8Y+z-17=0.
Тогда точка К пересечения этой плоскости с осью 0z (х=0 и y=0) будет иметь координаты К(0;0;17).
Сумма координат этой точки равна 17.
Проверка: найдем модули векторов КС и КР. Вектор КС{1;3;16}, вектор КР{4;-5;15}.
Модули векторов: |КC|= √(1+9+256)=√266. |KP|=√(16+25+225)=√266.Итак, расстояния от точки К до точек С и Р равны.
№2. Чтобы найти координаты вершины D параллелограмма, надо найти точку О пересечения его диагоналей (а так как в параллелограмме диагонали точкой пересечения делятся пополам, надо найти середину вектора АС) и найти координаты вектора ВD по координатам его начала (точка В) и середины (точка О).
Итак, координаты точки О (середина отрезка АС) находим по формуле: x=(x1+x2)/2, y=(y1+y2)/2, z=(z1+z2)/2).
В нашем случае это О(2,5;-0,5;-0,5). тогда координаты конца вектора ВD найдем по этой
же формуле, подставив известные значения точек В и О:
-2+Хd=5, 4+Yd=-1, -5+Zd=-1. Xd=7, Yd=-5, Zd=4. Итак, имеем точку D(7;-5;4).
Тогда сумма координат этой точки равна 6.
Проверка: Вектора АВ и CD (также как и BC и АD) должны быть равны по модулю и коллинеарны. Найдем координаты векторов:
AB={-6;5;-8}, CD{6;-5;8}. BC{3;-4;-1}, AD{3;-4;1} И их модули:
|AB|=√125, |CD|=√125. |BC|=√26, |AD|=√26. Итак, фигура АВСD - параллелограмм.