1. Рассмотрим треугольник ADB. Угол D=90 гр.(т.к. BD- высота), угол А= 45 гр., т.к. сумма углов треугольника равна 180 гр, следует, что угол В= 180гр.- (угол А+угол D)= 180 гр.-(90гр. +45 гр.)=45 градусов. Тогда угол В=углу А, следовательно, треугольник ADB- равнобедренный(т.к. углы при основании равны), следовательно АВ в нём основание, а AD=BD=6. Таким образом, высота(BD) равна 6. 2. Площадь треугольника= половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты. В нашем треугольнике это 1/2* BD*AC. AC=9(т.к. AD+DC=9). Таким образом площадь равна 1/2*6*9=27 ответ: 27
2. Площадь треугольника= половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты. В нашем треугольнике это 1/2* BD*AC. AC=9(т.к. AD+DC=9). Таким образом площадь равна 1/2*6*9=27
ответ: 27
1) АВСD- параллелограмм, угол А = 60, ВС- меньшая диагональ
Проведём высjту ВH. Получим прямоугольный Δ с гипотенузой = 8 и углом 60 и 30
Против угла 30 лежит катет АH. Он = 4. Тогда BH = 4√3 ( по т. Пифагора)
HD = 11 (15 - 4)
Из ΔВDH найдём ВD ( по т Пифагора) ВD= 13
2). Теперь берёмся зa диагональное сечение ВDD1B1 Его площадь = произведению дины и ширины
S = DB·DD1
130 = 13·DD1
DD1= 10
3) Sбок = Росн.·DD1=(15 + 8 + 15 + 8)·10 =460
Sосн = 15·8·Sin60= 120√3/2 = 60√3
4)S = 460 + 120 √3