Длина бокового ребра наклонной четырёхугольной призмы 12, площадь каждой боковой грани 120 Определите вид многоугольника, который является перпендикулярным сечением призмы, вычислите периметр этого многоугольника.
1) Площадь равна 1/2 высоты на сторону. высота 12, а сторона 12\3=4 S= 12*4/2=24 2) По т. Пифагора катет = 13^2-12^2=5 S=1\2*5*12=30 3) cторона в кв= 25+36=81 стор =9 Р=4*9=36 S=10*12=120 4) Там наверное прям. трап, а не треуг. S тр= полусумме осн на высоту. Рассм прям треуг с углом А=60 выс. ВК в этом треуг. угол АВК= 30 , а гипот 8 по условию. Катет лежащий напротив угла в 30 градусов раван 1\2 гип. = 4. значит большее осн.=8, а маленькое 4. найдем выс по Пифагору ВК в кв 64-16=48 а ВК 4корней из 3. теперь подставить в формулу S трап.=(4+8)/2*4корней из 3=24 корн из 3
Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
S= 12*4/2=24
2) По т. Пифагора катет = 13^2-12^2=5
S=1\2*5*12=30
3) cторона в кв= 25+36=81 стор =9 Р=4*9=36 S=10*12=120
4) Там наверное прям. трап, а не треуг. S тр= полусумме осн на высоту. Рассм прям треуг с углом А=60 выс. ВК в этом треуг. угол АВК= 30 , а гипот 8 по условию. Катет лежащий напротив угла в 30 градусов раван 1\2 гип. = 4. значит большее осн.=8, а маленькое 4. найдем выс по Пифагору ВК в кв 64-16=48 а ВК 4корней из 3. теперь подставить в формулу S трап.=(4+8)/2*4корней из 3=24 корн из 3
№4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD.
Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны)
Отсюда AP/AM1 = AC1/AB;
8/6 = x/9;
x = 12;