Длина наклонной АК, проведенной из точки А к плоскости α равна 8 корень из 3 см, а угол между прямой и этой плоскостью равен 60°. Найдите длину проекции наклонной на плоскость α.
Из точки А к плоскости проведены две наклонные АВ и АС, расстояние от А до плоскости - перпендикуляр АН, проекции наклонных - НВ и НС. 1) если АВ=х см, АС=х+26 см, НВ=12 см и НС=40 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-144 и АН²=АС²-НС²=(х+26)²-1600=х²+52х-924. Приравниваем х²-144=х²+52х-924, х=780:52=15 см это АВ и АС=15+26=41 см. 2) если АВ=х см, АС=2х см, НВ=1 см и НС=7 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-1 и АН²=АС²-НС²=4х²-49. Приравниваем х²-1=4х²-49, х²=48:3=16 см это АВ и АС=2*16=32 см.
По условию МК-перпендикуляр, значит < АКМ = < ВКМ =90°, также < ВСА=90°. Если рассмотреть четырехугольник ВСМК, то в нем сумма противоположных углов < ВСМ + < ВКМ=90+90=180°, и другие противоположные углы < КВС + < КМС=360-180=180° (сумма углов четырехугольника равна 360°). Следовательно этот четырехугольник можно вписать в окружность (суммы его противоположных углов равны 180°). Углы МКС и МВС являются вписанными в окружность и опирающимися на одну дугу МС, значит эти углы равны.