1) Пусть средняя линия будет KH Проведем высоту BT к основанию AD угол ABT = 30 градусов, поэтому AT = 6 Проведем высоту CJ к основанию AD JD = CD так как треугольник CJD - равнобедренный Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см. KL = KD - LD = 12 - 5 = 7 см. Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см. (BC + AD) / 2 = (7 + 17) / 2 = 12 см. ответ: длина средней линии 12 см.
Проведем диагональ трапеции и рассмотрим образовавшиеся треугольники. Пара противоположных сторон ромба являются средними линиями этих треугольников, каждая из них параллельна этой диагонали и равна ее половине. Отсюда эта пара - равные и параллельные стороны, т.е. четырехугольник - параллелограмм. Аналогично другая пара противоположных сторон равны. А т.к.к трапеция равнобедренная, то ее диагонали равны. Значит все стороны четырехугольника равны. Таким образом, четырехугольник - параллелограмм с равными сторонами, т.е. ромб.
Проведем высоту BT к основанию AD
угол ABT = 30 градусов, поэтому AT = 6
Проведем высоту CJ к основанию AD
JD = CD так как треугольник CJD - равнобедренный
Средняя линия трапеции: 1/2(BC+AD) = 1/2(8 + 8+ 10 + 6) = 1/2 * 32 = 16
2) Назовем данную трапецию ABCD, где BC, AD - основания, проведем две высоты BK, CL, тогда длина AK будет равна 5 см, а длина KD будет равна 12 см, тогда длина LD будет равна длине AK и будет равна также 5 см.
KL = KD - LD = 12 - 5 = 7 см.
Так как длина KL равна длине меньшего основания, тогда длина BC также равна 7 см, можем найти среднюю линию трапеции, если BC = 7 см, AD = 17 см.
(BC + AD) / 2 = (7 + 17) / 2 = 12 см.
ответ: длина средней линии 12 см.