Длина отрезка VB равна 83–√ м. Он пересекает плоскость в точке O. Расстояние от концов отрезка до плоскости соответственно равны 3 м и 9 м. Найди острый угол, который образует отрезок VB с плоскостью.
MO - средняя линия △BCA (BM=MC по условию; AO=OC т.к. диагонали параллелограмма точкой пересечения делятся пополам)
MO || AB (средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине.)
Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки (теорема Фалеса).
AB || TP || MO AP=PO (по условию) BT=TM (по теореме Фалеса)
1)а
2)по углам:а по сторонам:б
3)AB=AC+BC=8,5см
4)в (сумма острых углов в прямоугольном треугольнике равна 90°)
5)6+6+9=21см
6)б
2 часть
1)в равнобедренном треугольнике углы при основании равны, следовательно они равны 130°/2=65°
Сумма углов в треугольнике равна 180°. 180°-(65°+65°)=50°
ответ:65°,65°,50°
2) периметр ABD равен 17см, а высота равна 6, следовательно AB+AD=17-6=11 см. BD - медиана, следовательно AD=BD.
Рассмотрим треугольники ABD и CBD:
1)BD - общая сторона
2)AD=BD
3)ADB=CDB
Следовательно треугольники равны по двум сторонам и углу между ними.
Следовательно периметр треугольника АВС равен 11+11=22 см.
ответ: 22см.
MO || AB (средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине.)
Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки (теорема Фалеса).
AB || TP || MO
AP=PO (по условию)
BT=TM (по теореме Фалеса)