МР=АС:2, MN=BC:2, PN=AB:2, МР, PN и MN- средние линии ∆ АВС. ⇒ ∆ ВМР и ∆ АВС подобны ( легко докажете сами) Коэффициент подобия k=1/2 Площади подобных треугольников относятся как квадрат коэффициента подобия. S1:S=k²=1/4 Тогда S∆ ABC=48*4=192 Пусть коэффициент отношения сторон ∆АВС будет а. Тогда АВ=ВС=5а, АС=6а Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a. Найдем по т.Пифагора высоту: BN=√(AB²-AN²)=√16a²=4a По формуле площади треугольника S ∆ ABC=4a*6a:2=12a² 12a²=192 a²=16 a=√16=4 P=5а+5а+6а=16а Р=16*4=64 ------- Можно площадь ∆ АВС найти несколько иначе: МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192
Если через центры данных окружностей провести прямую, то относительно нее данные касательные к окружностям будут симметричны. Тогда четырехугольник ABCD - равнобедренная трапеция. Найдем ее основания: (см. рисунок) ОО1АВ - прямоугольная трапеция, О1Q=AB=h - ее высота. По теореме Пифагора
Поскольку треугольники TCO иTDO1 - подобны и соотношение сторон равно R:r=4, то . По теореме Пифагора
Тогда , Поскольку треугольники TCS иTDR также подобны и соотношение сторон равно, то CS=4*12=48.
Тогда ABCD - равнобедренная трапеция с высотой 48 cм и средней линией 48+12=60 см. Ее площадь будет равна S=60*48=2880 см^2.
∆ ВМР и ∆ АВС подобны ( легко докажете сами)
Коэффициент подобия k=1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия.
S1:S=k²=1/4
Тогда S∆ ABC=48*4=192
Пусть коэффициент отношения сторон ∆АВС будет а.
Тогда АВ=ВС=5а, АС=6а
Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a.
Найдем по т.Пифагора высоту:
BN=√(AB²-AN²)=√16a²=4a
По формуле площади треугольника
S ∆ ABC=4a*6a:2=12a²
12a²=192
a²=16
a=√16=4
P=5а+5а+6а=16а
Р=16*4=64
-------
Можно площадь ∆ АВС найти несколько иначе:
МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192
Найдем ее основания: (см. рисунок)
ОО1АВ - прямоугольная трапеция, О1Q=AB=h - ее высота. По теореме Пифагора
Поскольку треугольники TCO иTDO1 - подобны и соотношение сторон равно R:r=4, то
.
По теореме Пифагора
Тогда
,
Поскольку треугольники TCS иTDR также подобны и соотношение сторон равно, то CS=4*12=48.
Тогда ABCD - равнобедренная трапеция с высотой 48 cм и средней линией 48+12=60 см. Ее площадь будет равна
S=60*48=2880 см^2.