найдем площадь ромба через площадь четырех прямоугольных треугольников,из которых он состоит раздели ромб диагоналями на 4 равных прямоугольных треугольника,каждый треугольник получился с углами в 30,60 и 90 градусов. рассмотрим один из них отдельно,обозначив его АВС: у него гипотенуза(она же сторона ромба,назовем ее АВ) равна 8 см,а т.к против угла в 30 град лежит катет в 2 р меньше гипотенузы,то один из катетов (СВ) будет равен 4.По теореме Пифагора находим второй катет (АС): АВ^2=АС^2+СВ^2 АС^2=АВ^2-СВ^2 АС=корень квадратный из (АВ^2-СВ^2) АС=корень квадратный из (8^2-4^2)=корень кв из (64-16)=квадратный корень из 48=4 корня из 3 Площадь (S) прямоугольного треугольника АВС=(АС*СВ)/2 S=((4 корня из 3) *4)/2=(16 корней из 3)/2=8 корней из 3 умножаем S треугольника АВС на 4 и получаем площадь ромба S(ромба)=4S(АВС)=(8 корней из 3)*4=32 корня их 3
Объяснение:
Решение.
АВС - треугольник.
∠1 - ∠2 =10*.
Найдем внутренний угол А.
∠А=180*-140*=40*.
На угол 1 и угол 2 остается
180*-40*=140*;
∠1+∠2=140*;
Известно, что ∠1 -∠2 =10*. Откуда ∠1=∠2+10*;
∠2+10*+∠2 = 140*;
2∠2=140*-10*;
∠2=65*;
∠1-∠2=10*;
∠1=10*+∠2=10*+65*=75*.
***
Дано треугольник АВС. Внешний угол В равен 110*.
Найдем внутренний угол В:
∠В=180*-110*=70*;
Δ АВС - равнобедренный (по условию), у котрого углы при основании равны ∠1=∠2.
∠1=∠2=(180*-70*)/2 = 55*.
***
Дано тупоугольный треугольник АВС.
Внешний угол при вершине равен 50*.
Найдем внутренний угол В:
180*-50*=130*.
∠1+∠2=180*-130*=50*;
Пусть угол 1 равен 2х. Тогда угол 2 равен 3х.
2х+3х=50*;
5х=50*;
х=10*;
Угол 1 равен 2х=2*10=20*;
Угол 2 равен 3х=3*10=30*.
найдем площадь ромба через площадь четырех прямоугольных треугольников,из которых он состоит
раздели ромб диагоналями на 4 равных прямоугольных треугольника,каждый треугольник получился с углами в 30,60 и 90 градусов.
рассмотрим один из них отдельно,обозначив его АВС:
у него гипотенуза(она же сторона ромба,назовем ее АВ) равна 8 см,а т.к против угла в 30 град лежит катет в 2 р меньше гипотенузы,то один из катетов (СВ) будет равен 4.По теореме Пифагора находим второй катет (АС):
АВ^2=АС^2+СВ^2
АС^2=АВ^2-СВ^2
АС=корень квадратный из (АВ^2-СВ^2)
АС=корень квадратный из (8^2-4^2)=корень кв из (64-16)=квадратный корень из 48=4 корня из 3
Площадь (S) прямоугольного треугольника АВС=(АС*СВ)/2
S=((4 корня из 3) *4)/2=(16 корней из 3)/2=8 корней из 3
умножаем S треугольника АВС на 4 и получаем площадь ромба
S(ромба)=4S(АВС)=(8 корней из 3)*4=32 корня их 3