Длина стороны ромба ABCD равна 10 см, длина диагонали BD равна 12 см. Через точку О пересечения диагоналей ромба проведена прямая ОК, перпендикулярная его плоскости. Найдите расстояние от точки К до вершин ромба, если ОК= 16 см.
Если в параллелограмме диагонали пересекаются под прямым углом, то параллелограмм является ромбом.
Тогда половинки диагоналей и сторона ромба образуют прямоугольный треугольник, и по теореме Пифагора
а² = (0,5d₁)² + (0,5d₂)²
Проверим, так ли это.
17² = 8² + 15²
289 = 64 + 225
289 ≡ 289
Полученное тождество говорит, что действительно половинки диагоналей и сторона ромба образуют прямоугольный треугольник. Значит, диагонали этого параллелограмма пересекаются под прямым углом, и параллелограмм является ромбом, что и требовалось доказать.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Объяснение:
d₁ = 16 см
d₂ = 30 см
а = 17 см
Доказать, что данный параллелограмм - ромб
Если в параллелограмме диагонали пересекаются под прямым углом, то параллелограмм является ромбом.
Тогда половинки диагоналей и сторона ромба образуют прямоугольный треугольник, и по теореме Пифагора
а² = (0,5d₁)² + (0,5d₂)²
Проверим, так ли это.
17² = 8² + 15²
289 = 64 + 225
289 ≡ 289
Полученное тождество говорит, что действительно половинки диагоналей и сторона ромба образуют прямоугольный треугольник. Значит, диагонали этого параллелограмма пересекаются под прямым углом, и параллелограмм является ромбом, что и требовалось доказать.