Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Серега поспешил немного :)) а торопиться не надо :)) мы должны вернуть обществу полноценного гражданина :))
Да, если опустить высоту на основание, то треугольник делится на 2 равных прямоугольных, причем у каждого гипотенуза 15, и катет 9. Это треугольники, подобные египетскому (3,4,5), то есть второй катет 12, это и есть высота. Можно, конечно, и теорему Пифагора применить напрямую, но так веселее.
Периметр треугольника 48, площадь 12*15/2 = 90, отсюда радиус вписанной окружности r = 2S/P
r = 2*90/48 = 45/12;
Радиус описанной окружности конечно считается по формуле R = abc/4S, которая выводится из обычной формулы для площади и теоремы синусов.
R = 18*15*15/(4*90) = 45/4;
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²