Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
Перед решением задачи необходимо построить треугольник АВС (угол С 90 градусов), провести высоту СН, нанести известные данные.
1. Найдем сторону ВС треугольника АВС.
sinА = ВС/АВ
Подставим известные значения.
0,6 = ВС/25
ВС = 25 * 0,6 = 15
2. Найдем сторону АС треугольника АВС.
По теореме Пифагора: АВ2 = ВС2 + АС2
АС2 = АВ2 - ВС2 = 252 - 152 = 625 - 225 = 400
АС = 20
3. Рассмотрим треугольник АСН:
Угол Н равен 90 градусов, АС = 20, sinА = 0,6.
sinА = СН/АС
Подставим известные значения.
0,6 = СН/20
СН = 0,6 * 20 = 12.
ответ: Высота СН = 12.
-----
Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2.
Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию
Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659
sin 15º=≈0,2588
S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади)
-----------
Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах
Этот вариант решения дан в приложении.