Треугольник, в котором длины сторон относятся как 5:4:3 - прямоугольный "египетский". Радиус прямоугольного треугольника можно найти по формуле: r=(a+b-c):2, где а и b- катеты, с- гипотенуза треугольника. r=(4+3-5):2=1 Рассмотрим рисунок. Длины отрезков касательных до точки касания, проведенных из одной точки, равны. ТС=СН=r=1 ВН=ВМ=3-1=2 АТ=АМ=4-1=3 ⇒ СН::НВ=1:2 СТ:ТА=1:3 ВМ:МА=2:3 Искомое отношение длин отрезков равно 1:2:3
r=(a+b-c):2, где а и b- катеты, с- гипотенуза треугольника.
r=(4+3-5):2=1
Рассмотрим рисунок.
Длины отрезков касательных до точки касания, проведенных из одной точки, равны.
ТС=СН=r=1
ВН=ВМ=3-1=2
АТ=АМ=4-1=3 ⇒
СН::НВ=1:2
СТ:ТА=1:3
ВМ:МА=2:3
Искомое отношение длин отрезков равно 1:2:3