Катеты прямоугольного треугольника равны 20 √41 и 25√41, то по теореме Пифагора гипотенуза = √(20 √41)² + (25√41)²=√16400+25625=√42025=205 Площади треугольника равна: S = (20 √41 * 25√41) / 2 (половине произведения катетов). Площади треугольника равна: S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней) где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х: (20 √41 * 25√41) / 2 = (205 * х) / 2 (20 √41 * 25√41) = (205 * х) (умножили на 2) √400*41*√625*41=205х √16400*√25625=205х √420250000=205х 20500=205х x=20500:205 x=100 ответ: Высота равна 100.
1. построить угол между данными плоскостями --это угол между перпендикулярами к линии пересечения плоскостей (к стороне квадрата) 2. построить перпендикуляр к плоскости это будет катет в прямоугольном треугольнике с углом в 60° и тогда треугольник с искомым углом окажется тоже прямоугольным))) можно записать любую функцию для искомого угла: sin(KAC) = (a√3 / 2) : a√2 = √3 / (2√2) = √6 / 4 cos(KAC) = (a√5 / 2) : a√2 = √5 / (2√2) = √10 / 4 tg(KAC) = (a√3 / 2) : (a√5 / 2) = √(3/5) = √0.6 или (в общем случае)) по т.косинусов...
Площади треугольника равна:
S = (20 √41 * 25√41) / 2 (половине произведения катетов).
Площади треугольника равна:
S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней)
где х - высота, проведенная к гипотенузе.
Составим равенство и найдем значение х:
(20 √41 * 25√41) / 2 = (205 * х) / 2
(20 √41 * 25√41) = (205 * х) (умножили на 2)
√400*41*√625*41=205х
√16400*√25625=205х
√420250000=205х
20500=205х
x=20500:205
x=100
ответ: Высота равна 100.
2. построить перпендикуляр к плоскости это будет катет в прямоугольном треугольнике с углом в 60°
и тогда треугольник с искомым углом окажется тоже прямоугольным)))
можно записать любую функцию для искомого угла:
sin(KAC) = (a√3 / 2) : a√2 = √3 / (2√2) = √6 / 4
cos(KAC) = (a√5 / 2) : a√2 = √5 / (2√2) = √10 / 4
tg(KAC) = (a√3 / 2) : (a√5 / 2) = √(3/5) = √0.6
или (в общем случае)) по т.косинусов...