Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
При пересечении двух параллельных прямых третьей секущей сумма внутренних односторонних углов равна 180° Всего мы получаем две пары внутренних односторонних углов: <1 и <2, <3 и <4 Причем <1 + <2 = 180° <3 + <4 = 180° Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360° Нам известна сумма трех углов. Найдем четвертый угол: 360° - 235° = 125° Допустим, это <1. Тогда <2 = 180°-125°=55° <2 и <3 - накрест лежащие, по свойству параллельных прямых они равны <2 = <3 = 55° <4 и <1 - также накрест лежащие, следовательно <4 = 125°
Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3)
Известно, что:
R=a^2/sqr(4a^2-b^2)
Подставив значение b, получим: R=a
Отсюда: АВ=2 см
Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда:
r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
Всего мы получаем две пары внутренних односторонних углов:
<1 и <2, <3 и <4
Причем
<1 + <2 = 180°
<3 + <4 = 180°
Тогда <1 + <2 + <3 + < 4 = 180° + 180° = 360°
Нам известна сумма трех углов. Найдем четвертый угол:
360° - 235° = 125°
Допустим, это <1. Тогда <2 = 180°-125°=55°
<2 и <3 - накрест лежащие, по свойству параллельных прямых они равны
<2 = <3 = 55°
<4 и <1 - также накрест лежащие, следовательно
<4 = 125°