Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
Сначала немного рассуждений. На стороне АВ вершиной внутрь ромба построен равносторонний треугольник. Стороны этого треугольника равны сторонам ромба ( АВ - сторона ромба, у ромба все стороны равны, у равностороннего треугольника - тоже), а острый угол ромба больше 60°, иначе сторона АО построенного треугольника АОВ должна совпасть со стороной АD ромба. Углы равностороннего треугольника равны 60°. Сумма углов ромба, прилегающих к одной стороне, равна 180°. Следовательно∠DАО+∠СВО=180°-(ОАВ+ОВА)=180° -60°*2=60° Рассмотрим треугольники DАО и СВО. Они - равнобедренные, так как АВ=АD=АО=BO=ВС по условию задачи - стороны треугольника АОВ равны сторонам ромба и равны АВ. Сумма всех углов ᐃ DАО и ᐃ СВО равна 180°*2=360°. Углы в каждом из них при основаниях равны. Сумма углов при основании ᐃ АОD+ cумма углов при основании ᐃ ВОС=(360°- (∠DАО+∠СВО)=360°-60°)=300°Сумма ∠DОА+∠ СОВ=300°:2=150°Сумма всех углов при точке О равна 360° Угол СОD=360-(∠АОD+ВОD)- АОВ=360°-150°-60°=150°
Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
На стороне АВ вершиной внутрь ромба построен равносторонний треугольник.
Стороны этого треугольника равны сторонам ромба ( АВ - сторона ромба, у ромба все стороны равны, у равностороннего треугольника - тоже), а острый угол ромба больше 60°, иначе сторона АО построенного треугольника АОВ должна совпасть со стороной АD ромба.
Углы равностороннего треугольника равны 60°.
Сумма углов ромба, прилегающих к одной стороне, равна 180°.
Следовательно∠DАО+∠СВО=180°-(ОАВ+ОВА)=180° -60°*2=60°
Рассмотрим треугольники DАО и СВО.
Они - равнобедренные, так как АВ=АD=АО=BO=ВС по условию задачи - стороны треугольника АОВ равны сторонам ромба и равны АВ.
Сумма всех углов ᐃ DАО и ᐃ СВО равна 180°*2=360°.
Углы в каждом из них при основаниях равны.
Сумма углов при основании ᐃ АОD+ cумма углов при основании ᐃ ВОС=(360°- (∠DАО+∠СВО)=360°-60°)=300°Сумма ∠DОА+∠ СОВ=300°:2=150°Сумма всех углов при точке О равна 360°
Угол СОD=360-(∠АОD+ВОD)- АОВ=360°-150°-60°=150°