сумма углов выпуклого четырехугольника равен 360°( это по формуле 180(n-2). n-это количество углов, в нашем случае количество углов равен 4, т.к четырехугольник. получает 180(4-2)=180*2=360°)
2:3:4:9 это все части. цифра 9 самая большая, значит это самый большой угол четырехугольника так как он состоит из 9 частей
но чтобы найти 9 частей нам сначала нужно найти 1 часть, для этого составим уравнение
пусть 1 часть это х, тогда 2 части это 2х, 3 части это 3х, 4 части это 4х , а 9 частей это 9х. их сумма равна 360°
2х+3х+4х+9х=360
18х=360
х= 20 это одна часть
самый большой угол состоит из 9 частей поэтому это число нужно умножить на 9
а) Любой прямоугольный треугольник можно разрезать на два равнобедренных треугольника.
Верно.
В любом прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине (см. рисунок). Если разрезать треугольник по медиане, то получим два равнобедренных треугольника.
б) Существует четырехугольник со сторонами 2, 3, 5, 11.
Неверно.
Каждая сторона четырехугольника должна быть меньше суммы остальных его сторон.
В данном четырехугольнике для стороны 11:
11 < 5 + 3 + 2 - неравенство неверно, значит четырехугольник с такими сторонами не существует.
в) В любом выпуклом пятиугольнике всегда есть тупой угол.
Верно.
Сумма углов выпуклого многоугольника определяется по формуле:
180°(n - 2), где n - количество сторон.
Для пятиугольника:
180° · 3 = 540°.
Если предположить, что все его углы острые (меньше 90°), то сумма будет меньше 90° · 5 = 450°. Значит есть тупой угол.
г) Внутри любого треугольника существует точка, равноудаленная от всех его вершин.
Неверно.
Точка, равноудаленная от всех вершин треугольника, - это центр описанной окружности.
Только в остроугольном треугольнике центр описанной окружности лежит внутри треугольника. В прямоугольном - на стороне (середина гипотенузы). В тупоугольном - вне треугольника.
сумма углов выпуклого четырехугольника равен 360°( это по формуле 180(n-2). n-это количество углов, в нашем случае количество углов равен 4, т.к четырехугольник. получает 180(4-2)=180*2=360°)
2:3:4:9 это все части. цифра 9 самая большая, значит это самый большой угол четырехугольника так как он состоит из 9 частей
но чтобы найти 9 частей нам сначала нужно найти 1 часть, для этого составим уравнение
пусть 1 часть это х, тогда 2 части это 2х, 3 части это 3х, 4 части это 4х , а 9 частей это 9х. их сумма равна 360°
2х+3х+4х+9х=360
18х=360
х= 20 это одна часть
самый большой угол состоит из 9 частей поэтому это число нужно умножить на 9
20*9= 180°---большой угол
а) Любой прямоугольный треугольник можно разрезать на два равнобедренных треугольника.
Верно.
В любом прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине (см. рисунок). Если разрезать треугольник по медиане, то получим два равнобедренных треугольника.
б) Существует четырехугольник со сторонами 2, 3, 5, 11.
Неверно.
Каждая сторона четырехугольника должна быть меньше суммы остальных его сторон.
В данном четырехугольнике для стороны 11:
11 < 5 + 3 + 2 - неравенство неверно, значит четырехугольник с такими сторонами не существует.
в) В любом выпуклом пятиугольнике всегда есть тупой угол.
Верно.
Сумма углов выпуклого многоугольника определяется по формуле:
180°(n - 2), где n - количество сторон.
Для пятиугольника:
180° · 3 = 540°.
Если предположить, что все его углы острые (меньше 90°), то сумма будет меньше 90° · 5 = 450°. Значит есть тупой угол.
г) Внутри любого треугольника существует точка, равноудаленная от всех его вершин.
Неверно.
Точка, равноудаленная от всех вершин треугольника, - это центр описанной окружности.
Только в остроугольном треугольнике центр описанной окружности лежит внутри треугольника. В прямоугольном - на стороне (середина гипотенузы). В тупоугольном - вне треугольника.