Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя.
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
а) 9см б) нет
Пошаговое объяснение:
Сначала разберёмся что такое равновеликая и равносоставленная фигура. Равновеликими называются те фигуры, которые равны по площади. Равносоставленные фигуры - это фигуры, которые можно разрезать на одинаковое число попарно равных фигур. Пример равносоставленных фигур смотрите на рис 1.1 и рис 1.2
Приступим к решению:
а) Пусть длина начального прямоугольника а₁, ширина b₁, тогда площадь- S₁. Тогда длина второго прямоугольника а₂, ширина b₂, площадь- S₂. По определению равновеликих фигур можем записать, что их площади равны, и каждая из которых равно произведению длины и ширины:
ответ: ширина второго прямоугольника равна 9 см.
б) Теорема гласит, что любые два равновеликих многоугольника равносоставлены. Но в нашем случае есть и другое условие, а именно: прямоугольники разделили на два треугольника диагональю (см рис 1.3). Полученные треугольники попарно неравные, следовательно равносоставленными их назвать нельзя.
ответ: нет.
Лучший ответ