1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
1. Т.к. треугольник равнобедренный, то высота=биссектриса=медиана ⇒ делит угол 120° на два по 60, образует с основанием два угла по 90° ⇒ образуются два одинаковых прямоугольных Δ. Углы при основании по 30°, сторона, противолежащая углу в 30 = половине гипотенузы ⇒ гипотенуза в данном случае = 9*2=18.
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение:
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.