Отрезок, соединяющий основания высот треугольника, является стороной ортотреугольника (т.е. треугольника, вершинами которого являются основания высот исходного). Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.
Доказательсто: У прямоугольных треугольников АС1С и АА1С общая гипотенуза, а, значит, около них можно описать одну окружность. Четырехугольник АСА1С1 вписанный. Сумма противоположных углов вписанного четырехугольника 180°.
Угол С1АС=угол ВА1С1 ( составляют 180° в сумме с углом С1А1С)
Вписанный угол ВАС и угол ВАС - между касательной и хордой – равны половине дуги ВС ( свойство), следовательно, ∠ВАС=∠ВАС
Прямые ВК и С1А1 пересекаются секущей ВА1, накрестлежащие ∠КВА1=∠ВА1С1 ( доказано выше).⇒ ВК и С1А1 параллельны.
Радиус, проведенный в точку касания с прямой, перпендикулярен этой прямой. Следовательно, ВО перпендикулярен как ВК, так и С1А1, что и требовалось доказать.
а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.
Отрезок, соединяющий основания высот треугольника, является стороной ортотреугольника (т.е. треугольника, вершинами которого являются основания высот исходного). Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.
Доказательсто: У прямоугольных треугольников АС1С и АА1С общая гипотенуза, а, значит, около них можно описать одну окружность. Четырехугольник АСА1С1 вписанный. Сумма противоположных углов вписанного четырехугольника 180°.
Угол С1АС=угол ВА1С1 ( составляют 180° в сумме с углом С1А1С)
Вписанный угол ВАС и угол ВАС - между касательной и хордой – равны половине дуги ВС ( свойство), следовательно, ∠ВАС=∠ВАС
Прямые ВК и С1А1 пересекаются секущей ВА1, накрестлежащие ∠КВА1=∠ВА1С1 ( доказано выше).⇒ ВК и С1А1 параллельны.
Радиус, проведенный в точку касания с прямой, перпендикулярен этой прямой. Следовательно, ВО перпендикулярен как ВК, так и С1А1, что и требовалось доказать.
а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.