Углы при основании в сумме равны 90°, значит продолжения боковых сторон трапеции пересекаются под прямым углом и треугольник АРD - прямоугольный. Построение рисунка: на основании трапеции CD=21, как на диаметре, строим окружность. Тогда ЛЮБАЯ точка Р на полуокружности даст нам прямой угол. Соединим точки АР и DP прямыми и "встроим" отрезок ВС=7 в треугольник APD параллельно основанию AD. Проведем окружность с центром в точке О через точки А и В, касающуюся прямой DP. Отметим, что таких окружностей может быть две, симметрично прямой АВ. Пусть точка K - точка касания окружности и прямой DP. Проведем прямую ОО1 параллельно прямой DP. Тогда четырехугольник ОКРН - прямоугольник со стороной ОК - искомым радиусом. Решение. Треугольник ВРС подобен треугольнику APD с коэффициентом подобия k=BC/AD=1/3. Тогда ВР/АР=1/3 или ВР/(АВ+ВР)=1/3. Отсюда 3ВР=АВ+ВР => ВР= 6. НВ=6 (так как ОН - перпендикуляр из центра окружности к хорде АВ). Тогда НР=НВ+ВР=12. Но НР=ОК. ответ: R=12.
P.S. Для окружности с центром в точке О1 решение аналогично и результат тот же.
МК/АБ=МН/АС=к
8/4=12/6=2
треугольники АБС и МНК подобны
угол С=180-80-60=40
по 2 свойству подобия (подобие сохраняет величины углов)
угол А=М=80
угол В=К=60
угол С=Н=40
2. т.к. МК II АС => треугольники АВС и МВК подобные.
ВМ:АМ=1:4
пусть ВМ=х, тогда АМ=4х, тогда АВ=х+4х=5х =>
МВ:АВ=1:5
коэффициент подобия=1:5=0,2
Мы знаем, что отношение периметров подобных треугольников равно коэффициенту подобия =>
периметр треугольника МВК : периметру треугольника АВС = 1:5
периметр треугольника МВК=периметр треугольника АВС : 5
периметр треугольника МВК=25:5=5см.
АРD - прямоугольный.
Построение рисунка: на основании трапеции CD=21, как на диаметре, строим окружность. Тогда ЛЮБАЯ точка Р на полуокружности даст нам прямой угол. Соединим точки АР и DP прямыми и "встроим" отрезок ВС=7 в треугольник APD параллельно основанию AD.
Проведем окружность с центром в точке О через точки А и В, касающуюся прямой DP. Отметим, что таких окружностей может быть две, симметрично прямой АВ. Пусть точка K - точка касания окружности и прямой DP. Проведем прямую ОО1 параллельно прямой DP. Тогда четырехугольник ОКРН - прямоугольник со стороной ОК - искомым радиусом.
Решение.
Треугольник ВРС подобен треугольнику APD с коэффициентом подобия k=BC/AD=1/3. Тогда ВР/АР=1/3 или ВР/(АВ+ВР)=1/3.
Отсюда 3ВР=АВ+ВР => ВР= 6.
НВ=6 (так как ОН - перпендикуляр из центра окружности к хорде АВ).
Тогда НР=НВ+ВР=12. Но НР=ОК.
ответ: R=12.
P.S. Для окружности с центром в точке О1 решение аналогично и результат тот же.