Точка О - место пересечения биссектрис треугольника АВС. Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы. Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС, АО/ОФ=(АВ+АС)/АВ. Пусть ∠АОВ=∠ДОФ=α. Запишем формулы нахождения площадей треугольников АОВ и OФД и сразу разделим их как показано далее по предложенному отношению: S(ΔАОВ) = 0.5·АО·ВО·sinα -------------------------------------- =6:1, S(ΔOФД) = 0.5·ОД·ОФ·sinα
(ВО/ОД)·(АО/ОФ)=6, 2АВ·(АВ+АС)/(АВ·АС)=6, 2АВ+2АС=6АС, АВ=2АС, Итак, АС/АВ=1/2=1:2 - это ответ.
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
Отрезки биссектрисы, разделённые точкой пресечения биссектрис (точкой О), имеют отношение большего к меньшему как (b+c):а, где а - сторона к которой проведена биссектриса, b и с - боковые стороны угла биссектрисы.
Значит в нашем треугольнике ВО/ОД=(АВ+ВС)/АС=2АВ/АС,
АО/ОФ=(АВ+АС)/АВ.
Пусть ∠АОВ=∠ДОФ=α.
Запишем формулы нахождения площадей треугольников АОВ и OФД и сразу разделим их как показано далее по предложенному отношению:
S(ΔАОВ) = 0.5·АО·ВО·sinα
-------------------------------------- =6:1,
S(ΔOФД) = 0.5·ОД·ОФ·sinα
(ВО/ОД)·(АО/ОФ)=6,
2АВ·(АВ+АС)/(АВ·АС)=6,
2АВ+2АС=6АС,
АВ=2АС,
Итак, АС/АВ=1/2=1:2 - это ответ.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.