До двох кіл з радіусами 5 і 20, що дотикаються зовнішнім проведені їх спільні дотичні — внутрішня і дві зовнішні. Визначити довжину відрізка внутрішньої дотичної, який лежить між зовнішніми дотичними.
Ромб - четырехугольник с равными сторонами. ⇒ сторона ромба равна Р:4=16:4=4 дм Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180° Тогда тупой угол ромба равен 180° минус острый угол. Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ. Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°, Следовательно, тупой угол ромба равен 180°-30°=150° Вариант решения: Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны.. В треугольнике АВН катет ВН равен половине гипотенузы АВ. Приловжим к треугольнику АВН равный ему треугольник АНВ₁. ВВ₁=2+2=4 дм В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны. Сумма углов треугольника равна 180ª⇒ ∠ АВН=180°:3=60º ⇒ ∠ АВС=∠АВН +∠НВС=60°+90°=150°
1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
сторона ромба равна Р:4=16:4=4 дм
Сумма углов параллелограмма, прилежащих к одной стророне ( а ромб- параллелограмм) равна 180°
Тогда тупой угол ромба равен 180° минус острый угол.
Если из тупого угла В ромба АВСД провести высоту ВН на АД, получим прямоугольный треугольник АВН, в котором катет ВН равен половине гипотенузы АВ.
Наверное, Вы уже знаете, что, если катет прямоугольного треугольника равен половине гипотенузы, он лежит против угла 30°,
Следовательно, тупой угол ромба равен 180°-30°=150°
Вариант решения:
Высота ромба - перпендикуляр, проведенный из вершины к его стороне или продолжению стороны..
В треугольнике АВН катет ВН равен половине гипотенузы АВ.
Приловжим к треугольнику АВН равный ему треугольник АНВ₁.
ВВ₁=2+2=4 дм
В треугольнике АВВ₁ все стороны равны 4 дм, следовательно, он равносторонний. В равностороннем треугольнике все углы равны.
Сумма углов треугольника равна 180ª⇒
∠ АВН=180°:3=60º ⇒
∠ АВС=∠АВН +∠НВС=60°+90°=150°