∠ACB = 65°
Объяснение:
Дано:
В ΔABC (см. рисунок)
∠ABC=∠ABL=61°
∠ALC=88°
Найти: ∠ACB
Решение.
Так как ∠ALC=88°, то смежный с ним угол ∠ALB=180° - 88° = 92°.
Используем свойство: сумма внутренних углов треугольника равна 180°: ∠АLB+∠АBL+∠BАL=180°
Отсюда:
∠BAL = 180° - ∠ALB - ∠АBL = 180° - 92° - 61° = 27°.
Биссектриса делит ∠BАC пополам, то
∠BАC = 2·∠BAL = 2·27° = 54°.
Ещё раз используем свойство: сумма внутренних углов треугольника равна 180°: ∠BАC+∠АBC+∠АCB=180°
∠ACB = 180° - ∠BАC - ∠АBC = 180° - 54° - 61° = 65°.
ответ: ∠ACB = 65°.
∠ACB = 65°
Объяснение:
Дано:
В ΔABC (см. рисунок)
∠ABC=∠ABL=61°
∠ALC=88°
Найти: ∠ACB
Решение.
Так как ∠ALC=88°, то смежный с ним угол ∠ALB=180° - 88° = 92°.
Используем свойство: сумма внутренних углов треугольника равна 180°: ∠АLB+∠АBL+∠BАL=180°
Отсюда:
∠BAL = 180° - ∠ALB - ∠АBL = 180° - 92° - 61° = 27°.
Биссектриса делит ∠BАC пополам, то
∠BАC = 2·∠BAL = 2·27° = 54°.
Ещё раз используем свойство: сумма внутренних углов треугольника равна 180°: ∠BАC+∠АBC+∠АCB=180°
Отсюда:
∠ACB = 180° - ∠BАC - ∠АBC = 180° - 54° - 61° = 65°.
ответ: ∠ACB = 65°.
Проверить - является ли четырехугольник АВСD квадратом.
Признак квадрата: равенство сторон и равенство диагоналей.
АВ = √((-1)²+(-6)²+8²) = √101 ≈ 10,049876.
ВС = √(7²+6²+(-4)²) = √101 ≈ 10,049876.
СД = √(1²+6²+(-8)²) = √101 ≈ 10,049876.
АД = √(7²+6²+(-4)²) = √101 ≈ 10,049876.
Как видим, стороны равны, проверяем диагонали.
АС = √(6²+0²+4²) = √52 ≈ 7,2111026.
ВД = √(8²+12²+(-12)² = √352 ≈ 18,7617.
Длины их не совпадают, значит, четырехугольник АВСD не квадрат.