До кола з центром О проведено дотичну в точці А і на ній позначено точку B так, що <ABO = 30° Знайдіть довжину відрізка OB, якщо радіус кола дорівнює 7 см
Так как точки М, N, K - середины сторон, а также исходя из того что треугольник равнобедренный и все его стороны равны AB=BC=AC делаем вывод что AM=MB=BN=NC=AK=KC. Так как в равностороннем треугольнике все углы равны 60 градусов, то треугольники AMK, MBN и NCK равнобедренные (AM=AK в треугольнике AMK, MB=BN в треугольнике MBN, NC=KC в треугольнике KNC) и каждый из них имеет один угол в 60 градусов. Исходя из того что 2 угла у основы равнобедренного треугольника равны решаем уравнение х+х+60=180градусов. Получаем х=60 градусов, то есть все углы треугольников AMK, MBN и KNC равны 60 градусов, значит это равнобедренные треугольники, а раз они равнобедренные то все их стороны равны. то есть AM=AK=MK, MB=BN=MN, KC=NC=NK, ТО ЕСТЬ AM=AK=MK=MB=BN=MN=KC=NC=NK, значит MK=MN=NK =) MNK-равносторонний
Значит так. Вспомним что такое равнобедренный треугольник и высота. Равнобедренный треугольник у которого боковые стороны равны и углы при основании равны. Высота - перпендикуляр проведённый из вершины к противоположной стороне. И он образует прямой угол. Приступим к задаче: Пусть треугольник ABC. AC-основание. т.к. треугольник равнобедренный, то AB=10 и BC=10 (AB и BC боковые стороны) Высота BH образует два прямоугольных треугольника ABH и BCH. Можно из треугольника ABH найти AH, по теореме пифагора. AB^2=BH^2+AH^2 выражаем AH^2 AH^2=AB^2-BH^2=100-64=36 AH=6 таким же образом находим HC в треугольнике HBC. т.к. треугольник равнобедренный то HC то же будет равно 6 AC=HC+AH=6+6=12 ОТвет: AC=12
Так как в равностороннем треугольнике все углы равны 60 градусов, то треугольники AMK, MBN и NCK равнобедренные (AM=AK в треугольнике AMK, MB=BN в треугольнике MBN, NC=KC в треугольнике KNC) и каждый из них имеет один угол в 60 градусов. Исходя из того что 2 угла у основы равнобедренного треугольника равны решаем уравнение х+х+60=180градусов. Получаем х=60 градусов, то есть все углы треугольников AMK, MBN и KNC равны 60 градусов, значит это равнобедренные треугольники, а раз они равнобедренные то все их стороны равны. то есть AM=AK=MK, MB=BN=MN, KC=NC=NK, ТО ЕСТЬ AM=AK=MK=MB=BN=MN=KC=NC=NK, значит MK=MN=NK =) MNK-равносторонний
Вспомним что такое равнобедренный треугольник и высота. Равнобедренный треугольник у которого боковые стороны равны и углы при основании равны.
Высота - перпендикуляр проведённый из вершины к противоположной стороне. И он образует прямой угол.
Приступим к задаче:
Пусть треугольник ABC. AC-основание.
т.к. треугольник равнобедренный, то AB=10 и BC=10 (AB и BC боковые стороны)
Высота BH образует два прямоугольных треугольника ABH и BCH.
Можно из треугольника ABH найти AH, по теореме пифагора.
AB^2=BH^2+AH^2 выражаем AH^2
AH^2=AB^2-BH^2=100-64=36
AH=6
таким же образом находим HC в треугольнике HBC.
т.к. треугольник равнобедренный то HC то же будет равно 6
AC=HC+AH=6+6=12
ОТвет: AC=12