На данном рисунке имеем две пары равных треугольников. Во-первых — QTP и RSP. Треугольники равны по стороне и двум равным прилежащим углам - 2-ой признак (стороны РТ и РS равны по условию, углы РSR и QTP тоже равны по условию, угол QPR у них общий).
Также равны треугольники SMQ и ТМR, что вытекает из равенства двух других треугольников. Углы QSM и RTM равны, по св-ву смежных (если два угла равны, то смежные с ними углы равны). Углы SMQ и TMR равны, как вертикальные. Равенство углов PQT и PRS получаем из равенства треугольников QTP и RSP.
22
На данном рисунке имеем равные треугольники MKF и NPE. Они равны по стороне и двум прилежащим углам — 2-ой признак (равенство сторон KF и PE нам дано, углы MKF и NPE также равны по условию, а углы KFM и PEN равны по свойству смежных углов (если два угла равны, то смежные с ними углы равны).
23
На данном рисунке имеем:
1) равные треугольники AED и BED (по двум сторонам и углу между ними); равенство АЕ и ЕВ нам дано по условию, ED - общая сторона, углы AED и BED тоже равны по условию.
2) из равенства этих треугольников вытекает равенство треугольников АЕС и ВЕС (по двум сторонам и углу между ними); равенство АЕ и ЕВ нам дано по условию, ЕС - общая сторона, а углы АЕС и ВЕС равны по свойству смежных углов (если два угла равны, то смежные с ними углы равны).
3) из равенства этих треугольников вытекает равенство треугольников АDC и BDC (по двум сторонам и углу между ними); равенство АD и DB мы получаем из равенства треугольников AED и BED; сторона СD у треугольников общая, а углы ADC и BDC также равны из доказанного равенства треугольников AED и BED.
Рівнобедрений трикутник із бічною стороною а і кутом "альфа" при вершині обертається навколо прямої, що містить основу. Знайбіть об'єм утвореного тіла обертання
Дано : AB =AC = a ; ∠BAC = α
V - ?
Два Конуса
V =2*V₁ = 2*(1/3)S*H
S = π*R²=π*(AO)² = π*(acos( α /2) ) ² = π*a²cos²( α /2) || R = AO ||
H =BO =AB*sin (∠BAO) =asin (α /2)
V = 2*(1/3)S*H = (1/3)π*a²2cos²( α /2)*asin (α /2) =
На данном рисунке имеем две пары равных треугольников. Во-первых — QTP и RSP. Треугольники равны по стороне и двум равным прилежащим углам - 2-ой признак (стороны РТ и РS равны по условию, углы РSR и QTP тоже равны по условию, угол QPR у них общий).
Также равны треугольники SMQ и ТМR, что вытекает из равенства двух других треугольников. Углы QSM и RTM равны, по св-ву смежных (если два угла равны, то смежные с ними углы равны). Углы SMQ и TMR равны, как вертикальные. Равенство углов PQT и PRS получаем из равенства треугольников QTP и RSP.
22На данном рисунке имеем равные треугольники MKF и NPE. Они равны по стороне и двум прилежащим углам — 2-ой признак (равенство сторон KF и PE нам дано, углы MKF и NPE также равны по условию, а углы KFM и PEN равны по свойству смежных углов (если два угла равны, то смежные с ними углы равны).
23На данном рисунке имеем:
1) равные треугольники AED и BED (по двум сторонам и углу между ними); равенство АЕ и ЕВ нам дано по условию, ED - общая сторона, углы AED и BED тоже равны по условию.
2) из равенства этих треугольников вытекает равенство треугольников АЕС и ВЕС (по двум сторонам и углу между ними); равенство АЕ и ЕВ нам дано по условию, ЕС - общая сторона, а углы АЕС и ВЕС равны по свойству смежных углов (если два угла равны, то смежные с ними углы равны).
3) из равенства этих треугольников вытекает равенство треугольников АDC и BDC (по двум сторонам и углу между ними); равенство АD и DB мы получаем из равенства треугольников AED и BED; сторона СD у треугольников общая, а углы ADC и BDC также равны из доказанного равенства треугольников AED и BED.
Рівнобедрений трикутник із бічною стороною а і кутом "альфа" при вершині обертається навколо прямої, що містить основу. Знайбіть об'єм утвореного тіла обертання
Дано : AB =AC = a ; ∠BAC = α
V - ?
Два Конуса
V =2*V₁ = 2*(1/3)S*H
S = π*R²=π*(AO)² = π*(acos( α /2) ) ² = π*a²cos²( α /2) || R = AO ||
H =BO =AB*sin (∠BAO) =asin (α /2)
V = 2*(1/3)S*H = (1/3)π*a²2cos²( α /2)*asin (α /2) =
= (1/3)π* a²*2cos²(α/2) ) *asin(α/2)= (1/3)πsinα*cos(α/2) a³ .
* * * 2sin(α/2)*cos(α/2) = sin2*(α/2) = sinα * * *